Tìm GTNN của biểu thức:
a/ A = \(\frac{x-5}{\sqrt{x-2}-\sqrt{3}}\)
b/ B = x+7 - \(\sqrt{x-5}\)
Cho biểu thức: \(B=\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) với \(x\ge0;x\ne4;9\)
a, Rút gọn biểu thức B
b, Tìm x để B < 0
c, Tìm GTNN của B
cho biểu thức \(B=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a. rút gọn B
b.tính B biết \(x=\frac{3-\sqrt{5}}{2}\)
c.tìm x nguyên để B nguyên
d. tìm gtnn của \(\frac{1}{B}\)
1,Cho biểu thức:
A=\((\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}).\frac{\sqrt{x}-3}{\sqrt{x}}\)
a,Rút gọn
b,Tìm x để A=\(\frac{1}{5}\)
c,Tìm GTNN của bt P=(x+7).A
a) ĐKXĐ: \(x>0;x\ne9\)
\(A=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}+3}\)
b) \(A=\frac{1}{5}\) \(\Rightarrow\)\(\frac{1}{\sqrt{x}+3}=\frac{1}{5}\)
\(\Rightarrow\)\(\sqrt{x}+3=5\)
\(\Leftrightarrow\)\(\sqrt{x}=2\)
\(\Leftrightarrow\)\(x=4\)(t/m ĐKXĐ)
Vậy...
1,Cho biểu thức:
A=\((\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}).\frac{\sqrt{x}-3}{\sqrt{x}}\)
a,Rút gọn
b,Tìm x để A=\(\frac{1}{5}\)
c,Tìm GTNN của bt P=(x+7).A
Cho biểu thức : \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\) với x > 0 ; \(x\ne4\)
a, Rút gọn biểu thức P
b, Tìm GTNN của biểu thức P
Cho biểu thức : \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\) với \(x>0;x\ne4\)
a, Rút gọn biểu thức P
b, Tìm GTNN của biểu thức P
Tìm GTNN hoặc GTLN của cac biểu thức sau;
a)\(A=\frac{2}{\sqrt{x}+5}\)
b)\(B=\frac{-3}{\sqrt{x}+7}\)
c)\(C=\frac{5}{2\sqrt{x}+1}\)
d)\(D=\frac{-7}{3\sqrt{x}+2}\).
Lời giải:
ĐK để tồn tại các biểu thức là $x\geq 0$
a) Ta thấy: $\sqrt{x}\geq 0\Rightarrow \sqrt{x}+5\geq 5$
$\Rightarrow A=\frac{2}{\sqrt{x}+5}\leq \frac{2}{5}$
Vậy $A_{\max}=\frac{2}{5}$ khi $x=0$
b) $\sqrt{x}+7\geq 7$
$\Rightarrow \frac{1}{\sqrt{x}+7}\leq \frac{1}{7}$
$\Rightarrow B=\frac{-3}{\sqrt{x}+7}\geq \frac{-3}{7}$
Vậy $B_{\min}=\frac{-3}{7}$ khi $x=0$
c)
$2\sqrt{x}+1\geq 1\Rightarrow C=\frac{5}{2\sqrt{x}+1}\leq 5$
Vậy $C_{\max}=5$ khi $x=0$
d)
$3\sqrt{x}+2\geq 2\Rightarrow \frac{1}{3\sqrt{x}+2}\leq \frac{1}{2}$
$\Rightarrow D=\frac{-7}{3\sqrt{x}+2}\geq \frac{-7}{2}$
Vậy $B_{\min}=\frac{-7}{2}$ khi $x=0$
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Cho biểu thức
A=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}-\frac{\sqrt{x}+1}{\sqrt{x}+1}\)
a) Rút gọn biểu thức
b)Tìm GTNN của A
ai giải jup mik