Tính A= x/xy+x+1 +y/yz+y+1 + z/xz+z+1
biết x.y.z=1
Mình đang cần gấp, ai làm nhanh mình luôn nhá
cho x.y.z=2016
tính giá trị của biểu thức A =\(\frac{2016x}{xv+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)
giúp mình với, mình đang cần gấp
Thay \(2016=xyz\)vào biểu thức ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+z+1}{xz+z+1}=1\)
Vậy \(A=1\)
Vì \(xyz=2016\)
\(\Rightarrow A=\frac{2016x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)
\(=\frac{xyz.x}{xy+xyz.x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\)
A=x/xy+x+1 + y/yz+y+1 + z/xz+z+1
Giúp mình với nhá
Ahihi
Tìm nghiệm nguyên dương x,y,z của phương trình x+y+z -1 = xyz
Ai làm đúng mình tick cho, nhanh rep nhá, đang cần gấp lắm
x+y+z=xyz+1
Giả sử x lớn hơn =y lớn hơn =z
=> 3x> xyz+1 >xyz
=> 3> yz
do y,z nguyên dương nnee tìm đc y,z
cho x, y, z khác 0 thỏa mãn 1/xy + 1/yz + 1/xz =0. Tính N= x^2/yz + y^2/xz + z^2/xy
LÀM ƠN GIÚP MK VỚI, MK CẦN GẤP LẮM!!!
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi
cho x, y, z khác 0 thỏa mãn 1/xy + 1/yz + 1/xz =0. Tính N= x^2/yz + y^2/xz + z^2/xy
LÀM ƠN GIÚP MK VỚI, MK CẦN GẤP LẮM!!!
chứng minh rằng nếu x,y,z thuộc Q thỏa mãn x,y,z thì
\(\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}=1\)
Ai làm nhanh, đúng và đầy đủ mình sẽ tick cho
Tìm x,y,z thuộc Z biết x.y.z= x+ 2015 , x.y.z= y+ 2017. , x.y.z= z+ 2019 Các bạn giúp mình nhé! Các bạn giải luôn ra giúp mình. Mình đang cần gấp. Thanks.Ai làm mình sẽ tick cho luôn
bài 1: Phân tích đa thức thành nhân tử
a, (xy-1)2+ (x+y)2
b, a2+2a2+2a+1
c, (1+2a).(1-2a)-a.(a+2).(a-2)
d, a2+b2-a2b2+ab-a-b
e, xy.(x+y)-yz.(y+z)+xz(x-z)
f, xyz-(xy+yz+zx)+(x+y+z)-1
giúp em với ạ ! em đang cần gấp
\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)
\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
Mình đang cần gấp! Giúp mình với ạ
Bài 3: Chứng minh rằng:
a) (x+y+z)2= x2+y2+z2+2xy+2xz+2yz
b) (x-y).(x2+y2+z2-xy-yz-xz)= x3+y3+z3-3xyz
c) (x+y+z)3= x3+y3+z3+3.(x+y).(y+z).(z+x)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
c,
(\(x\) + y + z)3
=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3
= \(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 + 3(\(x\)+y)z(\(x\) + y + z) + z3
= \(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))
= \(x^3\) + y3 + z3 + 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)
= \(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)