Những câu hỏi liên quan
VA
Xem chi tiết
NT
19 tháng 9 2024 lúc 20:07

calibudaicho

Bình luận (0)
VN
Xem chi tiết
VN
9 tháng 9 2018 lúc 23:21

12a chứ ko phải 120a đâu

Bình luận (0)
NH
Xem chi tiết
NM
11 tháng 9 2018 lúc 10:47

1/ A=12(10a+3b) chia heets cho 12

2/

a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3

b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2

Bình luận (0)
PL
9 tháng 3 2020 lúc 14:11

nha!!!

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
H24
10 tháng 9 2018 lúc 16:55

1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )

\(a,b\in N\Rightarrow10a+3b\in N\)

Do đó\(12.\left(10a+3b\right)⋮12\)

Vậy\(A⋮12\)

2)

a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3

\(6b⋮3\)\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)

b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)

nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)

c) Ta có \(12a⋮12\);\(36b⋮12\)

nên \(12a+36b⋮12\)

Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)

nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)

\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh

P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không

Bình luận (0)
DN
Xem chi tiết
NT
21 tháng 9 2015 lúc 22:12

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

Bình luận (0)
NT
21 tháng 9 2015 lúc 22:02

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

Bình luận (0)
NH
20 tháng 8 2016 lúc 5:07

Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12

Bình luận (0)
DN
Xem chi tiết
PV
Xem chi tiết
PV
22 tháng 11 2017 lúc 15:15

làm rồi mình k cho

bài này bạn nào làm sao mình biết mình ra đề rồi tự tính rồi

Bình luận (0)
ST
22 tháng 11 2017 lúc 15:33

Câu 1:

a, a+5b = (a+b)-6b

Vì \(\hept{\begin{cases}a+b⋮6\\6b⋮6\end{cases}\Rightarrow\left(a+b\right)-6b⋮6\Rightarrow a+5b⋮6}\)

b, a-13b = (a+b) - 12b

Vì \(\hept{\begin{cases}a+b⋮6\\12b⋮6\end{cases}\Rightarrow\left(a+b\right)-12b⋮6\Rightarrow a-13b⋮6}\)

Câu 2:

Ta có: 1028 + 8 = 100...0 (28 c/s 0) + 8 = 100....08 (27 c/s 0)

Vì 1+0+0+...+8 = 9 chia hết cho 9 nên 1028 + 8 chia hết cho 9 (1)

Lại có: 103 chia hết cho 8 => 1028 chia hết cho 8 và 8 chia hết cho 8

Do đó 1028 + 8 chia hết cho 8 (2)

Mà (8,9) = 1 (3)

Từ (1),(2),(3) => đpcm

Câu 3:

x chia 5 dư 1 => x - 1 chia hết cho 5

x chia 3 dư 1 => x - 1 chia hết cho 3

=> x - 1 thuộc BC(5,3)

Ta có 5 = 5 ; 3 = 3

BCNN(5,3) = 5.3 = 15

BC(5,3) = B(15) = {0;15;30;....}

=> x - 1 thuộc {0;15;30;...}

=> x thuộc {1;16;31;....}

Bình luận (0)
PV
22 tháng 11 2017 lúc 15:36

bạn ST trả lời cũng có lý nhưng trình bày còn chưa đúng 

Bình luận (0)
NH
Xem chi tiết
H24
18 tháng 1 2021 lúc 19:41

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.

Bình luận (0)
NH
Xem chi tiết