Tìm nghiệm nguyên \(x^2-xy+y^2=2x-3y-2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm nghiệm nguyên
\(x^2-xy+y^2=2x-3y-2\)
Thầy, cô, anh chị nào giúp em với ạ! Em cảm ơn nhiều ạ!
Tìm nghiệm nguyên của phương trình:
a) xy + x - y = 6
b) 3xy - x + 3y = 2
c) xy + 2x - 3y = 9
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
tìm nghiệm nguyên của hệ phương trình sau
x^2+xy-3y^2=9 và 2x^2-655xy-660y^2=1992
Tìm nghiệm nguyên của các phương trình sau đây:
a) \(y^2+xy-2x-5y+5=0\)
b) \(2xy-10x-3y=-14\)
c) \(x^2-xy+4x-3y+2=0\)
Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
Tìm cặp số nguyên x, y thỏa mãn:
a) x=6y và lxl-lyl=60 b) lxl+lyl<2 c) (x+1)^2+(y+1)^2+(x-y)^2=2
d) xy+5x-7y=35 e) xy+2x-3y=9 f) xy-2x+5y-12=0
ᓚᘏᗢ
Tìm cặp số nguyên x, y thỏa mãn:
a) x=6y và lxl-lyl=60 b) lxl+lyl<2 c) (x+1)^2+(y+1)^2+(x-y)^2=2
d) xy+5x-7y=35 e) xy+2x-3y=9 f) xy-2x+5y-12=0 ^_^
tìm các nghiệm nguyên của:
a) y(x-1)=x^2+2
b) 3xy-5x-2y=3
c) x^2-10xy-11y^2=13
d) xy-4=2x+3y
e) 5xy+x+2y=7