Rút gọn rồi quy đồng mẫu :
D=1x2x3+2x3x4+3x4x5+4x5x6/1x3x10+2x4x15+3x5x20+4x6x25
C=2010/2008x7+2024
Tính nhanh:2/1x2x3+2/2x3x4+2/3x4x5+2/4x5x6+2/5x6x7+2/6x7x8
Giúp mình với!Thanks
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)
\(=\frac{1}{1.2}-\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{56}\)
\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)
Dấu . là nhân nha
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)
.......................................
\(\frac{2}{6.7.8}=\frac{1}{6.7}-\frac{1}{7.8}\)
S= \(\frac{1}{1.2}-\frac{1}{7.8}=\frac{27}{56}\)
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)
\(=\frac{1}{1.2}-\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{56}\)
\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)
Tính các biểu thức sau
a,2/1x3x5+2/3x5x7+2/5x7x9+2/7x9x11
b,1/1x2x3+1/2x3x4+1/3x4x5+1/4x5x6
Tính nhanh các biểu thức sau:
a,2/1x3x5+2/3x5x7+2/5x7x9+2/7x9x11
b,1/1x2x3+1/2x3x4+1/3x4x5+1/4x5x6
A = \(\dfrac{2}{1\times3\times5}\) + \(\dfrac{2}{3\times5\times7}\) + \(\dfrac{2}{5\times7\times9}\)+\(\dfrac{2}{7\times9\times11}\)
A = \(\dfrac{1}{2}\) x (\(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) + \(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\))
A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+\(\dfrac{1}{5\times7}\)-\(\dfrac{1}{7\times9}\)+\(\dfrac{1}{7\times9}\)-\(\dfrac{1}{9\times11}\))
A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\) - \(\dfrac{1}{9\times11}\))
A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{99}\))
A = \(\dfrac{1}{2}\times\) \(\dfrac{32}{99}\)
A = \(\dfrac{16}{99}\)
B = \(\dfrac{1}{1\times2\times3}\) + \(\dfrac{1}{2\times3\times4}\) + \(\dfrac{1}{3\times4\times5}\) + \(\dfrac{1}{4\times5\times6}\)
B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1\times2}\)-\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{2\times3}\)-\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{3\times4}\)-\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{4\times5}\)-\(\dfrac{1}{5\times6}\))
B = \(\dfrac{1}{2}\)x(\(\dfrac{1}{1\times2}\) - \(\dfrac{1}{5\times6}\))
B = \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}-\dfrac{1}{30}\))
B = \(\dfrac{1}{2}\)x \(\dfrac{7}{15}\)
B = \(\dfrac{7}{30}\)
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
Tính nhanh tổng :
1/1x2x3 + 1/2x3x4 + 1/3x4x5 + ... + 1/30x31x32 ( Nhân là ở mẫu số)
Ai nhanh mk tick
Đặt C = \(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+...+\frac{1}{30\times31\times32}\)
\(2C=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+...+\frac{2}{30\times31\times32}\)
\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)
\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)
\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)
\(=\frac{1}{2}-\frac{1}{992}=\frac{495}{992}\)
\(\Rightarrow C=\frac{495}{992}\div2=\frac{495}{1984}\)
Vậy ...
\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+.....+\frac{1}{30\times31\times32}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+.....+\frac{2}{30\times31\times32}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{30.31}-\frac{1}{31.32}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{31.32}\right)=\frac{1}{2}.\frac{990}{1984}=\frac{990}{3968}\)
1x2x3+2x3x4+3x4x5+...+98x99x100
Đặt A = 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 +....+ 98 x 99 x 100
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + 4 x 5 x 4 +....+ 98 x 99 x 100 x 4
4A = 1 x 2 x 3 x ( 4 - 0 ) + 2 x 3 x 4 x ( 5 - 1 ) + 4 x 5 x 6 x ( 7 - 3 ) +....+ 98 x 99 x 100 x ( 101 - 97 )
4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + 4 x 5 x 6 x 7 - 3 x 4 x 5 x 6 + .... + 98 x 99 x 100 x 101 - 98 x 99 x 100 x 97
A = 98 x 99 x 100 x 97 / 4
A = 98 x 99 x 25 x 97
1x2x3+2x3x4+3x4x5+....+2018x2019
A=1x2x3+2x3x4+3x4x5+...+99.100.101