Những câu hỏi liên quan
DH
Xem chi tiết
NV
Xem chi tiết
LF
19 tháng 6 2016 lúc 21:40

pt quá vĩ đại =.= cx trên OLM lun 

Bình luận (3)
LF
19 tháng 6 2016 lúc 22:12

câu a biến đổi to lắm

Bình luận (0)
LF
19 tháng 6 2016 lúc 22:14

\(\Leftrightarrow-\left(12x\sqrt{6x-1}-2\sqrt{6x-1}-2x^3-9x^2+6x-8\right)=0\)rồi sao nx 

cái này ra nghiệm là 

\(2-\sqrt{2}\)\(\sqrt{2}+2\)

Bình luận (6)
TN
Xem chi tiết
MH
16 tháng 9 2023 lúc 14:45

\(\Leftrightarrow x^2-6x+8=6\sqrt{2x+1}-18\left(Đk:x\ge-\dfrac{1}{2}\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=\dfrac{12\left(x-4\right)}{\sqrt{2x+1}+3}\left(\sqrt{2x+1}+3>0\right)\)

+) \(x=4\left(TM\right)\)

+) \(x\ne4\Rightarrow x-2=\dfrac{12}{\sqrt{2x+1}+3}\)

            \(\Leftrightarrow x-4=\dfrac{12-2\left(\sqrt{2x+1}+3\right)}{\sqrt{2x+1}+3}\)

             \(\Leftrightarrow x-4+\dfrac{2\left(x-4\right)}{\left(\sqrt{2x+1}+3\right)^2}=0\)

             \(\Leftrightarrow1+\dfrac{2}{\left(\sqrt{2x+1}+3\right)^2}=0\left(x\ne4\right)\)

    Vì \(\dfrac{2}{\left(\sqrt{2x+1}+3\right)^2}>0\forall x\) => VT>0

=> phương trình vô nghiệm

Vậy \(S=\left\{4\right\}\)

Bình luận (0)
DH
Xem chi tiết
TG
28 tháng 11 2021 lúc 17:41

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

Bình luận (0)
VT
Xem chi tiết
MG
Xem chi tiết
HL
Xem chi tiết
NT
11 tháng 3 2018 lúc 13:54

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

Bình luận (0)
TH
Xem chi tiết
PQ
20 tháng 10 2018 lúc 20:04

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 5 2021 lúc 21:34

undefinedundefined

Bình luận (0)