Những câu hỏi liên quan
TQ
Xem chi tiết
DH
28 tháng 1 2022 lúc 8:40

\(q\left(x\right)=x^2+8x+12=0\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}\)

\(f\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+9\)

\(f\left(x\right)=q\left(x\right)p\left(x\right)+ax+b\)

suy ra 

\(\hept{\begin{cases}f\left(-2\right)=-2a+b\\f\left(-6\right)=-6a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}-2a+b=-6\\-6a+b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-6\end{cases}}\)

Vậy số dư cần tìm là \(-6\).

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
NH
22 tháng 7 2016 lúc 15:47

(x+1)(x+5)(x+3)(x+7)+2002=[(x+1)(x+7)][(x+5)(x+3)]+2002

                                                 =(x2+8x+7)(x2+8x+15)+2002

                                                 =(x2+8x+7)(x2+8x+12)+3(x2+8x+7)+2002

                                                 =(x2+8x+7)(x2+8x+12)+3(x2+8x+12)+1987

                                                 =(x2+8x+10)(x2+8x+12)+1987

Vậy (x+1)(x+5)(x+3)(x+7)+2002 chia x2+x+12 dư 1987.

Bình luận (0)
HH
Xem chi tiết
NC
19 tháng 3 2020 lúc 18:21

Ta có: \(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+2028\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2028\)

Đặt: \(x^2+8x+12=t\) ta có: \(x^2+8x+7=t-5\) và \(x^2+8x+15=t+3\)

Ta có: \(A=\left(t+3\right)\left(t-5\right)+2028=t^2-2t+2013\)chia t dư 2013

Vậy A chia x2 + 8x + 12 dư 2013

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
NM
Xem chi tiết
NL
27 tháng 6 2017 lúc 17:11

Ta có:

\(g\left(x\right)=x^2+8x+12=\left(x+2\right)\left(x+6\right)\)

Vì g(x) là đa thức bậc 2 nên đa thức dư khi chia f(x) cho g(x) là đa thức bậc nhất.

Đặt đa thức dư khi chia f(x) cho g(x) là h(x)= ax+b.

Ta có

\(h\left(-2\right)=f\left(-2\right)\)

\(\Leftrightarrow-2a+b=1987\)(1)

\(h\left(-6\right)=f\left(-6\right)\)

\(\Leftrightarrow-6a+b=1987\)(2)

Từ (!)(2) suy ra:

\(-2a+b=-6a+b=1987\)

\(\Leftrightarrow-2a=-6a\Leftrightarrow a=0\Rightarrow b=1987\)

Vậy số dư khi chia fx ccho gx là 1987

Bình luận (0)
OO
Xem chi tiết
OO
Xem chi tiết
TD
3 tháng 2 2019 lúc 18:31

(x+1)(x+3)(x+5)(x+7) + 2004

= ( x2 + 8x + 7 ) ( x2 + 8x + 15 ) + 2004

đặt x2 + 8x + 1 = a

\(\Rightarrow\)( a + 6 ) ( a + 14 ) + 2004

= a2 + 20a + 84 + 2004

= a2 + 20a + 2088

Ta thấy a2 + 20a \(⋮\)x2 + 8x + 1 

\(\Rightarrow\)(x+1)(x+3)(x+5)(x+7) + 2004 chia x2 + 8x + 1 dư 2088

Bình luận (0)
DA
Xem chi tiết
NH
15 tháng 8 2016 lúc 9:07

Hỏi đáp Toán

Bình luận (0)
LQ
Xem chi tiết
AH
12 tháng 10 lúc 17:49

Lời giải:

$(x+1)(x+3)(x+5)(x+7)=[(x+1)(x+7)][(x+3)(x+5)]$

$=(x^2+8x+7)(x^2+8x+15)$

$=[(x^2+8x+12)-5][(x^2+8x+12)+3]$

$=(x^2+8x+12)^2+3(x^2+8x+12)-5(x^2+8x+12)-15$

$=(x^2+8x+12)^2-2(x^2+8x+12)-15$

$\Rightarrow (x+1)(x+3)(x+5)(x+7)$ chia $x^2+8x+12$ dư $-15$

Bình luận (0)