Những câu hỏi liên quan
NH
Xem chi tiết
NT
14 tháng 6 2023 lúc 9:39

M=1/4(4/1*5+8/5*13+12/13*15+16/25*41)

=1/4(1-1/5+1/5-1/13+...+1/25-1/41)

=1/4*40/41=10/41

N=1/3(6/1*7+9/7*16+...+18/43*61)

=1/3(1-1/7+...+1/43-1/61)

=1/3*60/61=20/41

=>M<N

Bình luận (0)
NN
Xem chi tiết
HH
21 tháng 3 2016 lúc 21:22

m=2 ; n=5 :))) tạm thời như thế. Cách giải mình nghĩ sau nhé bạn

Bình luận (0)
HH
21 tháng 3 2016 lúc 22:34

3m+4n-mn=16

<=>3m-mn+4n-16=0

<=> m(3-n)-4(3-n)=0+4

(3-n)(m-4)=4

Vì m,n thuộc z nên 3-n và m-4 thuộc z. Vế trái là 2 số nguyên nên ta xét các cặp tích =4 ta có bảng sau:

m-41-12-24-4
3-n4-42-21-1
m536280
n-171524

Vậy các cặp m,n thoả mãn là: 

(m;n)=(5;-1),(3;7),(6;1),(2;5),(8;2),(0;4)

p/s: Xong rồi đó, có gì sai sót thì ib mình nhé!

 

Bình luận (0)
NN
21 tháng 3 2016 lúc 21:06

mình cầu xin mấy bn đó

Bình luận (0)
TN
Xem chi tiết
CH
Xem chi tiết
2U
21 tháng 2 2020 lúc 8:14

\(2n-1⋮n+3\)

\(2\left(n+3\right)⋮n+3\)

\(2n+6⋮n+3\)

\(\left(2n+6\right)-\left(2n-1\right)⋮n+3\)

\(2n+6-2n+1⋮n+3\)

\(7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng xét giá trị 

n+31-17-7
n-2-44-10
Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
H24
13 tháng 1 2019 lúc 17:57

Nếu đề là tìm n để phím chia hết thì làm như sau
 n^2 +3n -7 : n-3
n(n+3)-7: n-3
 vì n(n+3) chia hết cho n+3 nên để n^2 +3n -7 chia hết cho n+3 thì -7 chia hết cho n+3
=> n+3 thuộc Ư(7)={1,7,-1,-7}
n+3=1 => n= -2
n+3=7 => n= 4
n+3 = -1 => n=-4
n+3=7 => n =-10
 

b, n^2 +5 : n+1 
n^2 -1+6 : n+1
(n-1)(n+1) + 6: n+1         ( n^2 -1 =(n+1)(n-1) là dùng hằng đẳng thức lớp 8 sẽ học)
vì (n-1)(n+1) chia hết cho n+1 nên để n^2 +5 chia hết n+1 thì 6 phải chia hết cho n+1
=> n+1 thuộc Ư(6)={1,2,3,6,-1,-2,-3,-6}
n+1 =1 =>n=0
n+1=2=>n=1
n+1=3=>n=2
n+1=6=>n=5
n+1=-1=>n=-2
n+1=-2=>n=-3
n+1=-3=>n=-4
n+1=-6=>n=-7

Bình luận (0)
PD
Xem chi tiết
PD
14 tháng 6 2020 lúc 21:00

cứu với

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
CN
31 tháng 3 2019 lúc 21:57

Đề bài sai phải ko???

Bình luận (0)
TN
Xem chi tiết
YA
30 tháng 5 2018 lúc 18:24

(d1) đi qua A => thay x = 2 , y = 0 vào hàm số ta có : 0 = 4m + 4n => 4(m+n) = 0 <=> m - n = 0

d1//d2 => a=a' và b khác b' hay 2m = 4 và 4n khác 3 <=> m = 2 => n = -2(t/m đk)

=> m = 2 và n = -2

Bình luận (0)
PQ
Xem chi tiết
NT
14 tháng 7 2023 lúc 22:08

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

Bình luận (0)
TT
14 tháng 7 2023 lúc 21:41

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

Bình luận (0)