a,b,c là độ dài 3 cạnh tam giác
CM nếu(a+b)×(b+c)×(c+a)=8abc thì tam giác đó đều
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b, c là độ dài 3 cạnh của tam giác và (a+b)(b+c)(c+a)=8abc. chứng minh rằng am giác đã cho là tam giác đều
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)
Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)
Nhân vế với vế:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều
Gọi a,b,c là độ dài ba cạnh của một tam giác. Cho biết (a+b)(b+c)(c+a)=8abc. CM: tam giác đã cho là tam giác đều
a;b;c là 3 cạnh của tam giác => a; b; c dương
Với a; b dương ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)
Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)
=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc
Dấu = xảy ra khi a = b = c
=> tam giác có 3 cạnh là a; b; c là tam giác đều
Gọi a, b, c là độ dài ba cạnh một tam giác. Cho biết (a + b)(b + c)(c + a) = 8abc. Chứng minh: Tam giác đã cho là tam giác đều
Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c
\(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\); \(c+a\ge\sqrt{ca}\)
Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu " = " xảy ra khi a = b = c => tam giác đó đều
Gọi a, b, c là độ dài ba cạnh một tam giác. Cho biết (a + b)(b + c)(c + a) = 8abc. Chứng minh: Tam giác đã cho là tam giác đều
Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0
Áp dụng BĐT co si cho 2 số dương ta có:
a+b\(\ge2\sqrt{ab}\)
b+c\(\ge2\sqrt{bc}\)
a+c\(\ge2\sqrt{ac}\)
=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)
Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c
Mà theo đề bài (a+b)(b+c)(c+a)=8abc
=>a=b=c=>tam giác đó là tam giác đều
co cach khac khong , minh chua hoc bat dang thuc cosi
Gọi a,b,c là độ dài ba cạnh của một tam giác. Cho biết (a+b)(b+c)(c+a)=8abc. CM: tam giác đã cho là tam giác đều bât
gọi a,b,c là độ dài ba cạnh môt tam giác . Cho biết : ( a+ b) . ( b +c) . ( c+ a) = 8abc . Chứng minh ; Tam giác đã cho là tam giác đều
Vì a,b,c là độ dài 2 cạnh của tam giác .Áp dụng BĐT Cô si ta có:
a+b>=2x căn(ab)
b+c>= 2x căn(bc)
c+a>= 2x căn(ac)
Nhân vế theo vế ta được (a+b)(b+c)(c+a) >=8abc
Dấu = xảy ra <=> a=b;b=c;c=a => a=b=c => tam giác đó là tam giác đều
Cho a ; b; c là độ dài ba cạnh của 1 tam giác . P là nửa chu vi của tam giác đó . CMR :
( p - a )( p - b )( p - c ) <= 1/8abc
\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)
\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)
Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)
Nên cần chứng minh:
\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.
Vậy ta có đpcm.
Chứng minh rằng: nếu a, b, c là độ dài 3 cạnh của tam giác và thỏa mãn điều kiện a2 + b2+ c2 = ab + ac + bc thì tam giác đó là tam giác đều
Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...