Những câu hỏi liên quan
HN
Xem chi tiết
H24
10 tháng 11 2019 lúc 13:39

Cho bạn kết quả phân tích thôi, tự phân tích nha:D

a) \(\Leftrightarrow2\left(x+4\right)\left(x+10\right)\left(x^2+14x+64\right)=0\)

b)\(\Leftrightarrow2\left(x-3\right)\left(x-4\right)\left(x^2-7x+26\right)=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
10 tháng 11 2019 lúc 16:43

Dạng này thì em : \(\frac{6+8}{2}=7\)

Đặt x  + 7 =t

=> Phương trình ban đầu trở thành: \(\left(t+1\right)^4+\left(t-1\right)^4=272\)

<=> \(\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^4-4t^3+6t^2-4t+1\right)=272\)

<=> \(2t^4+12t^2+2=272\)

<=> \(t^4+6t^2-135=0\)

<=> \(t^4+6t^2+9=144\)

<=> \(\left(t^2+3\right)^2=12^2\)

<=> \(\orbr{\begin{cases}t^2+3=12\\t^2+3=-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}t^2=9\left(tm\right)\\t^2=-15\left(l\right)\end{cases}}\Leftrightarrow t=\pm3\)

Với t = 3  có: x + 7 = 3 <=> x =-4

Với t = -3 có: x +7 =-3 <=> x = -10

b) pt  \(\left(5-x\right)^4+\left(2-x\right)^4=17\)<=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)

Tương tự: \(\frac{5+2}{2}=\frac{7}{2}\)

Đặt: \(x-\frac{7}{2}=t\)

pt trở thành: \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)

<=> .... 

Làm thử tiếp nha.

Chú ý công thức : \(\left(a\pm b\right)^4=a^4\pm4a^3b+6a^2b^2\pm4ab^3+b^4\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
10 tháng 11 2019 lúc 17:19

OK!

\(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)

<=> \(\left(t^4+4.t^3.\frac{3}{2}+6t^2.\frac{9}{4}+4t.\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4\right)\)

\(+\left(t^4-4.t^3.\frac{3}{2}+6t^2.\frac{9}{4}-4.t\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4\right)=17\)

<=> \(2t^4+27t^2-\frac{55}{8}=0\)

<=> \(t^4+\frac{27}{2}t^2-\frac{55}{16}=0\)

<=> \(\left(t^4+2.t^2.\frac{27}{4}+\frac{729}{16}\right)-\frac{729}{16}-\frac{55}{16}=0\)

<=> \(\left(t^2+\frac{27}{4}\right)^2=49\)

<=> \(t^2+\frac{27}{4}=\pm7\)

<=> \(\orbr{\begin{cases}t^2=\frac{1}{4}\\t^2=-\frac{55}{4}\left(l\right)\end{cases}}\Leftrightarrow t=\pm\frac{1}{2}\). Thay vào tìm x nhé.

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
NM
Xem chi tiết
H24
15 tháng 1 2017 lúc 15:55

(x+2)(x+8)(x+4)(x+6)

(x^2+10x+16)(x^2+10x+24)+16

(x^2+10x+20-4)(x^2+10x+20+4)+16

(x^2+10x+20)^2-16+16

(x^2+10x+20)^2

Bình luận (0)
TV
Xem chi tiết
H24
4 tháng 4 2020 lúc 14:05

Đặt x+7=tx+7=t , khi đó:
(t−1)4+(t+1)4=272(t-1)4+(t+1)4=272
⇔(t2−2t+1)2+(t2+2t+1)2=272⇔(t2-2t+1)2+(t2+2t+1)2=272
⇔(t2+1)2−4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272⇔(t2+1)2-4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272
⇔2(t2+1)2+8t2=272⇔2(t2+1)2+8t2=272
⇔t4+2t2+1+4t2=136⇔t4+2t2+1+4t2=136
⇔t4+6t2−135=0⇔t4+6t2-135=0
⇔t4−9t2+15t2−135=0⇔t4-9t2+15t2-135=0
⇔t2(t2−9)+15(t2−9)=0⇔t2(t2-9)+15(t2-9)=0
⇔(t2−9)(t2+15)=0⇔(t2-9)(t2+15)=0
Vì t2+15 ≥15∀tt2+15 ≥15∀t
⇔t=±3⇔t=±3
* Với t=3t=3 , ta có: x+7=3x+7=3 ⇔x=−4⇔x=-4
* Với t=−3t=-3 , ta có: x+7=−3x+7=-3 ⇔x=−10⇔x=-10

S= { −4;−10-4;-10 }
 

Bình luận (0)
 Khách vãng lai đã xóa
MA
4 tháng 4 2020 lúc 14:23

\(\Leftrightarrow\left(x-7+1\right)^4+\left(x-7-1\right)^4=272\)

Đặt x-7 = t, ta có :

\(\left(t+1\right)^4+\left(t-1\right)^4=272\)

\(\Leftrightarrow t^4+4t^4+6t^2+4t+1+t^4-4t^3+6t^2-4t+1-272=0\)

\(\Leftrightarrow2t^4+12t^2-270=0\)

\(\Leftrightarrow t^4+6t^2-135=0\)

\(\Leftrightarrow\left(t^2+15\right)\left(t^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t^2+15=0\\t^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t^2=-15\left(loai\right)\\t=\pm3\end{cases}}}\)

\(\cdot t=3\Leftrightarrow x-7=3\Leftrightarrow x=10\)

\(\cdot t=-3\Leftrightarrow x-7=-3\Leftrightarrow x=4\)

Vậy phương trình có tập nghiệm \(S=\left\{10;4\right\}\)

Chúc bạn học tốt nha ~~

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
TP
12 tháng 4 2019 lúc 6:00

Đặt \(x+7=a\)

\(pt\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4=272\)

\(\Leftrightarrow a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=272\)

\(\Leftrightarrow2a^4+12a^2+2=272\)

\(\Leftrightarrow2a^4+12a^2-270=0\)

\(\Leftrightarrow2\left(a^4+6a^2-135\right)=0\)

\(\Leftrightarrow a^4-3a^3+3a^3-9a^2+15a^2-45a+45a-135=0\)

\(\Leftrightarrow a^3\left(a-3\right)+3a^2\left(a-3\right)+15a\left(a-3\right)+45\left(a-3\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(a^3+3a^2+15a+45\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left[a^2\left(a+3\right)+15\left(a+3\right)\right]=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)\left(a^2+15\right)=0\)

Vì \(a^2+15>0\forall x\)

\(pt\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

Thay \(a=x+7\)ta có pt :

\(\left(x+7-3\right)\left(x+7+3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-10\end{cases}}\)

Vậy....

Bình luận (0)
VH
Xem chi tiết
EO
Xem chi tiết
SA
26 tháng 2 2021 lúc 21:14

a) đk: \(1\le x\le5\)

 \(\sqrt[4]{5-x}+\sqrt[4]{x-1}=\sqrt{2}\)

<=> \(\left(\sqrt[4]{5-x}+\sqrt[4]{x-1}\right)^4=\sqrt{2}^4\)

<=> \(5-x+x-1+4\sqrt[4]{5-x}^3.\sqrt[4]{x-1}+6\sqrt[4]{5-x}^2.\sqrt[4]{x-1}^2+4\sqrt[4]{5-x}.\sqrt[4]{x-1}^3=4\)

<=> \(\sqrt[4]{\left(5-x\right)\left(x-1\right)}.\left(2\sqrt[4]{5-x}^2+3\sqrt[4]{5-x}.\sqrt[4]{x-1}+2\sqrt[4]{x-1}^2\right)=0\)

<=> \(\left[{}\begin{matrix}\sqrt[4]{\left(5-x\right)\left(x-1\right)}=0\left(2\right)\\2\sqrt[4]{5-x}^2+3\sqrt[4]{\left(5-x\right)\left(x-1\right)}+2\sqrt[4]{x-1}^2=0\left(1\right)\end{matrix}\right.\)

Giải (2) <=> \(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\left(tm\right)\)

Giải (1) : Đặt \(\sqrt[4]{5-x}=a;\sqrt[4]{x-1}=b\)(đk : a, b \(\ge\)0)

Khi đó, ta có: \(2a^2+3ab+2b^2=0\)

<=> 2(a2 + 3/2ab + 9/16b2) + \(\dfrac{7}{8}b^2=0\)

<=> \(2\left(a+\dfrac{3}{4}b\right)^2+\dfrac{7}{8}b^2=0\)

<=> \(\left\{{}\begin{matrix}a+\dfrac{3}{4}b=0\\b=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\sqrt[4]{x-1}=0\\\sqrt[4]{5-x}=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)(vô lí)

 

Bình luận (3)
PP
3 tháng 12 2021 lúc 20:34

Bình luận (0)
H24
Xem chi tiết
TH
29 tháng 1 2019 lúc 20:43

(x+2)^4 + (x+8)^4 = 272 

*) Cách 1: đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3 
ptrình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272 
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272 
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại) 
* t = x+5 = -1 <=> x = -6 
* t = x+5 = 1 <=> x = -4 
KL: ptrình có 2 no: x = -6 or x = -4 
~ ~ ~ 
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

Bình luận (0)
BN
29 tháng 1 2019 lúc 20:57

*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

Bình luận (0)
H24
29 tháng 1 2019 lúc 21:01

X+6 nha bn

Bình luận (0)
LH
Xem chi tiết
NT
15 tháng 4 2018 lúc 11:15

x^4*4x^3*2+6x^2*2^2+4x*2^3+2^4+x^4+4x^3*8+6x^2*8^2+4x*8^3+8^4=272

2x^4+40x^3+408x^2+2080x+4112=272

Đến đây là bt ra x = -4

Bình luận (0)
NT
15 tháng 4 2018 lúc 11:04

x = -4 nha 

Bình luận (0)
PD
15 tháng 4 2018 lúc 11:08

\(\left(x+2\right)^4+\left(x+2\right)^4=272\)

\(\Rightarrow2\left[\left(x+2\right)^4\right]=272\)

\(\Rightarrow\left(x+2\right)^4=136\)

Vậy...............

Bình luận (0)