Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 5 2017 lúc 3:50

Gọi A i là biến cố “ mặt 4 chấm xuất hiện lần thứ i” với i = 1; 2; 3; 4.

Khi đó: A i là biến cố “ Mặt 4 chấm không xuất hiện lần thứ i”

Và  P ( A i ¯ )    = 1 −    P ( A i ) = 1 −    1 6 =    5 6

Ta có:   A ¯  là biến cố: “ không có mặt 4 chấm xuất hiện trong 4 lần gieo”

Và   A ¯ =    A 1 ¯ .     A 2 ¯ .   A 3 ¯ .   A 4 ¯ . Vì các A i ¯  độc lập với nhau nên ta có:

P (   A ¯ ) =   P (   A 1 ¯ ) .   P ( A 2 ¯ ) . ​ P (   A 3 ¯ )   . P ( A 4 ¯ ) =    5 6 4

Vậy P ( A ) = 1 − P (   A ¯ ) = 1 −    5 6 4 .

Chọn đáp án A.

Bình luận (0)
9D
Xem chi tiết
NL
20 tháng 12 2020 lúc 20:53

a. Có 3 mặt nguyên tố: 2,3,5 nên xác suất xuất hiện số nguyên tố ở mỗi lần gieo là \(\dfrac{3}{6}=\dfrac{1}{2}\)

Xác suất 2 lần đều xuất hiện số nguyên tố: \(\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{4}\)

b. Xác suất để lần 1 xuất hiện mặt 6 chấm: \(\dfrac{1}{6}\)

c. Xác suất ít nhất 1 lần xuất hiện mặt 6 chấm: \(\dfrac{2.6-1}{36}=\dfrac{11}{36}\)

d. Xác suất ko lần nào xuất hiện 6 chấm: \(1-\dfrac{11}{36}=\dfrac{25}{36}\)

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 2 2024 lúc 22:55

Đây giống với xác suất đại học hơn thì phải, cấp 3 hình như người ta ko cho dạng này (công thức Bernoulli)

\(P=C_4^1.\left(\dfrac{1}{6}\right)^1.\left(\dfrac{5}{6}\right)^{4-1}\)

Bình luận (7)
PB
Xem chi tiết
CT
18 tháng 2 2018 lúc 11:21

Gọi B i là biến cố “ mặt 3 chấm xuất hiện lần thứ i” với i =1;2; 3; 4

Khi đó:    B i ¯  là biến cố “ Mặt 3 chấm không xuất hiện lần thứ i”

Ta có:  A = B 1 ¯ . B 2 . B 3 . B 4 ∪ B 1 . B 2 ¯ . B 3 . B 4 ∪ B 1 . B 2 . B 3 ¯ . B 4 ∪ B 1 . B 2 . B 3 . B 4 ¯

Suy ra :

P A = P B 1 P B 2 P B 3 P B 4 + P B 1 P B 2 P B 3 P B 4 + P B 1 P B 2 P B 3 P B 4 + P B 1 P B 2 P B 3 P B 4

Mà : P ( B i ) =    1 6 ⇒ P ( B i ¯ ) = 1 − 1 6 =    5 6 .

Do đó: P ( A ) = 4.     1 6 3 .   5 6 =   5 324 .

Chọn đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 4 2019 lúc 12:13

Không gian mẫu là kết quả của việc gieo 3 lần súc sắc

⇒ n(Ω) = 6.6.6 = 216.

A: “ Mặt 6 chấm xuất hiện ít nhất 1 lần”

⇒ A: “ Không xuất hiện mặt 6 chấm”  

Giải bài 7 trang 77 sgk Đại số 11 | Để học tốt Toán 11

Bình luận (0)
TD
Xem chi tiết
NL
12 tháng 12 2021 lúc 9:38

Xác suất:

a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)

b. \(\dfrac{6}{36}=\dfrac{1}{6}\)

c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng

\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10

Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)

Bình luận (0)
SK
Xem chi tiết
H24
4 tháng 4 2017 lúc 9:45

undefined

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 1 2019 lúc 10:23

Gọi Ai là biến cố:” xuất hiện mặt sáu chấm ở lần thứ i”, i=1,2,3 X là biến cố:” có ít nhất một lần xuất hiện mặt thứ 6” thì

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

 

 

 

Chọn B

Bình luận (0)
SK
Xem chi tiết
NH
18 tháng 5 2017 lúc 16:39

Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)

Kí hiệu :

\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"

\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"

\(C:\) " Tổng số chấm là 6"

\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"

a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)

b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên

\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)

\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)

Bình luận (0)
NT
Xem chi tiết