Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NT
27 tháng 8 2021 lúc 22:21

a: ĐKXĐ: \(\left[{}\begin{matrix}x\le-\dfrac{3}{2}\\x>3\end{matrix}\right.\)

b: ĐKXĐ: x>3

c: Ta có: A=B

\(\Leftrightarrow\sqrt{\dfrac{2x+3}{x-3}}=\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow0x=0\)(luôn đúng với mọi x>3)

Bình luận (0)
NK
Xem chi tiết
NT
17 tháng 10 2021 lúc 0:01

a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Bình luận (0)
H24
Xem chi tiết
TM
15 tháng 7 2023 lúc 20:22

(a) Với \(x\ge0,x\ne9\), ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x}+3}.\)

(b) Ta có: \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{3}\).

Thay vào biểu thức \(A\) (thỏa mãn điều kiện), ta được: \(A=\dfrac{3}{2+\sqrt{3}+3}=\dfrac{3}{5+\sqrt{3}}\)

\(=\dfrac{3\left(5-\sqrt{3}\right)}{5^2-\left(\sqrt{3}\right)^2}=\dfrac{15-3\sqrt{3}}{22}.\)

(c) Để \(A=\dfrac{3}{5}\Rightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{3}{5}\)

\(\Rightarrow\sqrt{x}+2=5\Leftrightarrow x=9\) (không thỏa mãn).

Vậy: \(x\in\varnothing.\)

(d) Để \(A>1\Leftrightarrow A-1>0\Rightarrow\dfrac{3}{\sqrt{x}+3}-1>0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{\sqrt{x}+3}>0\Rightarrow1-\sqrt{x}>0\) (do \(\sqrt{x}+3>0\forall x\inĐKXĐ\))

\(\Rightarrow x< 1\). Kết hợp với điều kiện thì \(0\le x< 1.\)

(e) \(A\in Z\Rightarrow\dfrac{3}{\sqrt{x}+3}\in Z\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+3=1\\\sqrt{x}+3=-1\\\sqrt{x}+3=3\\\sqrt{x}+3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\left(VL\right)\\\sqrt{x}=-4\left(VL\right)\\\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\\\sqrt{x}=-6\left(VL\right)\end{matrix}\right.\)

Vậy: \(x=0.\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 8 2021 lúc 21:33

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
HP
18 tháng 12 2021 lúc 9:40

a, ĐK: \(x\ge0,x\ne1\)

\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+1+2\sqrt{x}+x+1-2\sqrt{x}-3\sqrt{x}-1}{x-1}\)

\(=\dfrac{2x-3\sqrt{x}+1}{x-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

Bình luận (0)
HP
18 tháng 12 2021 lúc 9:40

b, \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

Khi đó: 

\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\left(\sqrt{3}-1\right)-1}{\left(\sqrt{3}-1\right)+1}\)

\(=\dfrac{2\sqrt{3}-3}{\sqrt{3}}\)

\(=2-\sqrt{3}\)

Bình luận (0)
HP
18 tháng 12 2021 lúc 9:40

c, \(A=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{2}\)

\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}+1\)

\(\Leftrightarrow3\sqrt{x}=3\)

\(\Leftrightarrow x=1\left(l\right)\)

Vậy không tồn tại giá trị x thỏa mãn \(A=\dfrac{1}{2}\).

Bình luận (0)
NM
Xem chi tiết
AT
13 tháng 7 2021 lúc 16:28

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

\(=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

\(=\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}-1}=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)

b) \(P=\sqrt{x}-1\Rightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\Rightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(\Rightarrow4\sqrt{x}=x-1\Rightarrow x-4\sqrt{x}-1=0\)

\(\Delta=\left(-4\right)^2-4.\left(-1\right)=20\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{4-2\sqrt{5}}{2}=2-\sqrt{5}\\\sqrt{x}=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4+2\sqrt{5}}{2}=2+\sqrt{5}\end{matrix}\right.\)

mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}=2+\sqrt{5}\Rightarrow x=9+4\sqrt{5}\)

c) \(P=\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\dfrac{4\left(\sqrt{x}+1\right)-4}{\sqrt{x}+1}=4-\dfrac{4}{\sqrt{x}+1}\)

Để \(P\in Z\Rightarrow4⋮\sqrt{x}+1\Rightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\left(\sqrt{x}+1\ge1\right)\)

\(\Rightarrow x\in\left\{0;1;9\right\}\) mà \(x\ne1\Rightarrow x\in\left\{0;9\right\}\)

 

Bình luận (2)
NM
13 tháng 7 2021 lúc 16:23

giúp mình với ạ:<

 

Bình luận (0)
AT
Xem chi tiết
NT
8 tháng 11 2021 lúc 22:36

a: \(Q=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Bình luận (0)
NV
Xem chi tiết
KT
7 tháng 8 2018 lúc 21:28

a)  ĐKXĐ:  \(x\ge0;x\ne9\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}+\frac{5\sqrt{x}+3}{x-9}\)

  \(=\frac{\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

  \(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

Bình luận (0)
MB
Xem chi tiết
NT
24 tháng 10 2023 lúc 20:10

loading...  loading...  loading...  

Bình luận (0)