tìm x,y,z,biết:\(|3x-5+(2y+5)^{2018}+\left(4z-3\right)^{2020}|\le0\)
tìm x, y, z biết:
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
Ta có:
\(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-5\right|=0\\\left(2y+5\right)^{208}=0
\\\left(4z-3\right)^{20}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=5\\2y=-5\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{5}{3};y=-\dfrac{5}{2};z=\dfrac{3}{4}\)
Tìm x,y thỏa mãn:
a)\(^{\left|x+2y\right|+\left|4y-3\right|\le0}\)
b)\(\left|x-y-5\right|+2017\left(y-11\right)^{2018}\le0\)
c)\(^{\left(x+y\right)^{2020}+2018.\left|y-1\right|=0}\)
Bài 5: Tìm x;y;z biết: |3x-5|+\(\left(2y+5\right)^{208}\)\(\left(4z-3\right)^{20}\)≤0
Sửa đề \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\le0\)
Mà \(\left|3x-5\right|\ge0\);\(\left(2y+5\right)^{208}\ge0;\left(4x-3\right)^{20}\ge0\)
Do đó \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Bài 1: Tìm x, y, z biết
\(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\)
Bài 2: Viết các biểu thức sau dưới dạng thu gọn
A = |x - 1| + x + 3
B = 2x - |2x + 3|
B1:
Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)
Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:
\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
B2:
a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)
Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)
b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)
Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)
Bài 1.
Ta có \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|2y-\frac{1}{3}\right|\ge0\forall y\\\left|4z+5\right|\ge0\forall z\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\forall x,y,z\)
Kết hợp với đề bài => Chỉ xảy ra trường hợp \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\2y-\frac{1}{3}=0\\4z+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
Bài 2.
A = | x - 1 | + x + 3
Với x < 1 => A = -( x - 1 ) + x + 3 = -x + 1 + x + 3 = 4
Với x ≥ 1 => A = ( x - 1 ) + x + 3 = x - 1 + x + 3 = 2x + 2
B = 2x - | 2x + 3 |
Với x < -3/2 => B = 2x - -( 2x + 3 ) = 2x + ( 2x + 3 ) = 2x + 2x + 3 = 4x + 3
Với x ≥ -3/2 => B = 2x + -( 2x + 3 ) = 2x - ( 2x + 3 ) = 2x - 2x - 3 = -3
Bài 1 :
a) Tìm giá trị nhỏ nhất của biểu thức B= |x-2013| .2 + |2x-2014|
b) Tìm x,y,z biết : \(\left|3x-5\right|+\left(5y+7\right)^{2018}+\left(2z-3\right)^{2020}\le0\)
Bài 2 :
a) Tìm a,b biết \(\frac{a+b}{10}=\frac{a-2b}{7}\)và ab=9
b) Tìm GTLN của A : \(A=\frac{15\left|x+2018\right|+32}{6\left|x+2018\right|+8}\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\le0\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)
Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)
Tìm x,y,z biết :
\(|3x-5|+(2y+5)^{208}+(4z-3)^{20}\le0\)
Vì: \(\left|3x-5\right|\ge0\)và: \(\left(2y+5\right)^{208}\ge0\)cùng với: \(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)( trái với đề bài )
\(\Rightarrow\)Không tồn tại \(x,y,z\)thỏa mãn đề bài
Chúc bạn học tốt !
Có: \(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)với mọi x, y, z. (1)
Đề bài \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\) (2)
Từ (1) và (2) Suy ra chỉ xảy ra trường hợp: \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
<=> \(3x-5=0;2y+5=0;4z-3=0\)
<=> x =5/3; y=-5/2; z =3/4
Chết, bài của mình làm thiếu ( cũng có thể ns là sai )
Bạn làm theo bài của cô Nguyễn Linh Chi đi nhé.
Xin lỗi nhiều, tại cái tội hấp tấp !!!
tìm x,y,z biết:
/3x-5/+\(\left(2y+5\right)^{208}\) +\(\left(4z-3\right)^{20}\) < hoặc= 0
giúp mk với 8h mk đi học rồi
Tìm x,y biết
\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)
\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)
\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)