Tim GTNN cua: \(A=\frac{\left(x+a\right)\left(x+b\right)}{x}\)
a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
tim GTNN cua D=\(\frac{-15.\left|x+7\right|-68}{3.\left|x+7\right|+12}\)
Ta có:
|x+7|\(\ge\)0
Dấu "=" xảy ra \(\Leftrightarrow\)|x+7|=0
\(\Leftrightarrow\)x+7=0
\(\Leftrightarrow\)x=-7
Thay x=-7 vào M ta được:
MinD=\(\frac{-15.\left(-7\right)-68}{3.\left(-7\right)+12}\)
=\(\frac{105-68}{-21+12}\)
=\(\frac{37}{-9}\)
Vậy MinD=\(\frac{37}{-9}\)\(\Leftrightarrow\)x=-7.
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-3.\left(\dfrac{\sqrt{x}+3}{x-9}\right)\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-1\right)\)
a) Rut gon A
b) Tim GTNN cua A
cho 2 so duong x,y va x+y=1. Tim GTNN cua
M=\(\left(\frac{x-1}{x}\right)^2+\left(\frac{y-1}{y}\right)^2\)
Tim GTNN, GTLN cua:
\(A=\left|x-\sqrt{2}\right|+\left|y-1\right|\) voi \(\left|x\right|+\left|y\right|=5\)
cho a,b>0 thoa man a+b+c=6.Tim GTNN cua \(P=\frac{a^3}{\left(a+b\right)\left(b+2c\right)}+\frac{b^3}{\left(b+c\right)\left(c+2a\right)}+\frac{c^3}{\left(c+a\right)\left(a+2b\right)},\)
Bạn cho mình hỏi là chỉ a,b > 0 hay cả a,b,c > 0 vậy
Tim GTNN cua bieu thuc:
C=\(\frac{-2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)
Ta có :
\(C=-\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)
Ta có : | x + 4 | \(\ge\)0 ; ( y - 1.3 )104 \(\ge\)0
\(\Rightarrow\) | x + 4 | + ( y - 1.3 )104 \(\ge\)0
\(\Rightarrow\)| x + 4 | + ( y - 1.3 )104 + 18 \(\ge\)18
Dấu " = " xảy ra khi \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
\(\Rightarrow\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\le\frac{2}{18}=\frac{1}{9}\)
\(\Rightarrow\)GTLN của \(\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)là \(\frac{1}{9}\)
\(\Rightarrow\)\(-\frac{2}{\left|x+4\right|+\left(y-1.3\right)^{104}+18}\)có GTNN của \(\frac{1}{9}\)
Vậy Cmin = \(\frac{1}{9}\)khi \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Tìm GTNN
a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)
b. \(B=\left(x-\frac{5}{4}\right)^{20}+\left(y+\frac{4}{3}\right)^{30}-11\)
AI LÀM NHANH TỚ TIM
a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)
Ta có: \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\)
Dấu = xảy ra khi :
\(\frac{x}{5}+\frac{23}{2}=0\Leftrightarrow\frac{x}{5}=-\frac{23}{2}\Leftrightarrow x=-\frac{115}{2}\)
\(y-\frac{14}{3}=0\Leftrightarrow y=\frac{14}{3}\)
Vậy ..............
Ta có:
a) \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall y\)
=> \(\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{x}{5}+\frac{23}{2}=0\\y-\frac{14}{3}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
Vậy Min của A = 2019 tại \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
câu b tượng tự
\(b,B=\left[x-\frac{5}{4}\right]^{20}+\left[y-\frac{4}{3}\right]^{30}-11\)
Ta có : \(\left[x-\frac{5}{4}\right]^{20}\ge0\forall x\)
\(\left[y-\frac{4}{3}\right]^{30}\ge0\forall y\)
\(\Leftrightarrow\left[x-\frac{5}{4}\right]^{20}+\left[y-\frac{4}{3}\right]^{20}-11\ge-11\forall x,y\)
Dấu " = " xảy ra : \(\hept{\begin{cases}\left[x-\frac{5}{4}\right]^{20}=0\\\left[y-\frac{4}{3}\right]^{20}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-\frac{5}{4}=0\\y-\frac{4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=\frac{4}{3}\end{cases}}\)
Vậy : ...
Cho hai so duong x,y co tong bang 1
Tim GTNN cua P=\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)