Những câu hỏi liên quan
H24
Xem chi tiết
DH
21 tháng 10 2021 lúc 13:49

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow\hept{\begin{cases}a=bt\\c=dt\end{cases}}\).

\(\frac{ac}{bd}=\frac{bt.dt}{bd}=t^2\)

\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bt\right)^2-\left(dt\right)^2}{b^2-d^2}=\frac{t^2\left(b^2-d^2\right)}{b^2-d^2}=t^2\)

Suy ra đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
DX
Xem chi tiết
LQ
Xem chi tiết
TH
Xem chi tiết
DT
11 tháng 12 2017 lúc 20:30

ta có :

\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) \(\Rightarrow\) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

đặt \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) = k \(\Rightarrow\) a = ck ; b = dk

\(\dfrac{ac}{bd}\) = \(\dfrac{ck.c}{dk.d}\) = \(\dfrac{c^2.k}{d^2.k}\) = \(\dfrac{c^2}{d^2}\) (1)

\(\dfrac{a^2+c^2}{b^2+d^2}\) = \(\dfrac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}\) = \(\dfrac{c^2.k^2+c^2}{d^2.k^2+d^2}\) = \(\dfrac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\) = \(\dfrac{c^2}{d^2}\)(2)

từ (1) , (2) \(\Rightarrow\) \(\dfrac{ac}{bd}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
NT
5 tháng 11 2021 lúc 22:36

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2-c^2}{b^2-d^2}=k^2\)

\(\dfrac{ac}{bd}=k^2\)

Do đó: \(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

Bình luận (0)
NT
Xem chi tiết
IY
29 tháng 7 2018 lúc 21:46

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Bình luận (0)
NT
29 tháng 7 2018 lúc 21:54

Thanks  bạn nhé

Bình luận (0)
GG
30 tháng 7 2018 lúc 9:46

Ta co : a/b = c/d => a2/b2 = c2/d2 = ac/bd (*)

ma a2/b= c2/d= a2 + c2/ b+ d

Tu (*) ac/bd = a2 + c2/b2 + d2 (dpcm)

Hok tot !!!

Bình luận (0)
NQ
Xem chi tiết
HN
Xem chi tiết
PT
5 tháng 8 2016 lúc 7:51

Cách 1 :\(\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2}=\frac{ac}{bd}\left(1\right)\)

             \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)

Từ (1) và (2),ta có đpcm.

Cách 2 : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)thì a = bk ; c = dk.Ta có :

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(1\right)\)\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2),ta có đpcm.

Sorry !Mình chỉ biết 2 cách thôi !

Bình luận (0)