tim x, biet
x2-x+1/4=0
choP=(1/(x-2)-x^2/(8-x^3)*(x^2+2x+4)/(x+2)0/1/(x^2-4) tim DKXD va rut gon b tim Min p c tim x nguyen de p chia het cho x^2+1
Tim x biet : 20 . 2^x + 1 = 10.4^2 + 1
Tim x : ( 4-x:2)^3 - 1 = 2 . (2^3 - 5 : 2^0 )
20 . 2^x + 1 = 10.4^2 + 1
20 . 2^x + 1 = 10 . 16 + 1
20 . 2^x + 1 = 161
20 . 2^x = 161 - 1
20 . 2^x = 160
2^x = 8
2^x = 2^3
=> x = 3
( 4 - x : 2 )^3 - 1 = 2 . ( 2^3 - 5 : 2^0 )
( 4 - x : 2 )^3 - 1 = 2 . ( 8 - 5 : 1 )
( 4 - x : 2 )^3 - 1 = 2 . 3
( 4 - x : 2 )^3 - 1 = 6
( 4 - x : 2 )^3 = 7
=> ko tìm đc x
tim x thuoc z biet
(x-1)(x-3)=-5
(x+1)(x+4)=0
(x^2-4)(x^2-19)<0
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
\(\dfrac{1}{4}-\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=0\)
\(\left(2x\cdot\dfrac{1}{2}\right)^2=\dfrac{1}{4}-0\)
\(\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
`->`\(\left(2\cdot x\cdot\dfrac{1}{2}\right)^2=\left(\pm\dfrac{1}{2}\right)^2\)
`->`\(\left[{}\begin{matrix}2\cdot x\cdot\dfrac{1}{2}=\dfrac{1}{2}\\2\cdot x\cdot\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}2x=\dfrac{1}{2}\div\dfrac{1}{2}\\2x=-\dfrac{1}{2}\div\dfrac{1}{2}\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x=1/2` hoặc `x=-1/2.`
Tim X biet :
(X-1)^7 - 4(X -1) = 0
bạn có thể hướng dẫn cách làm giùm mình ko
\(\left(x-1\right)^7-4\left(x-1\right)=0\Rightarrow\left(x-1\right)\left[\left(x-1\right)^6-4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^6-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^6=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x-1=\sqrt[6]{4}\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\sqrt[6]{4}+1\end{cases}}}\)
Tim so nguyen x
(x - 4)(x + 3)>0
(x - 2)(x + 1)<0
a) Xét TH1; \(\hept{\begin{cases}x-4>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>4\\x>-3\end{cases}\Rightarrow}x>4.}\)
TH2: \(\hept{\begin{cases}x-4< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 4\\x< -3\end{cases}\Leftrightarrow}x< -3.}\)
b)ta thấy x-2<x+1 với mọi x
\(\Rightarrow\left(x-2\right)\left(x+1\right)< 0\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}.}}\)
=> -1<x<2
\(\Leftrightarrow-1< x< 2.\)
chăng hiểu s olm lại ko hiện phép kia
tim x biet : (X+1/2)x(X-3/4)=0
\(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
=> x = \(\frac{-1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
=> x = \(\frac{3}{4}\)
tim x biet
1)0,(31)+x=0,(7)
2)0,(4)nhan x=3/7
tIM X
(x-2/3).(x+1/4)=0
( x - 2/3 )(x+1/4) = 0
=> x- 2 / 3 = 0 hoặc x + 1/4 = 0
=> x = 2/3 hoặc x = -1/4
tim so nguyen x biet
(x + 3)(x - 1)<0
(x - 4)(x + 3)>0
*) Để (x+3)(x-1)<0
Thì x+3 và x-1 trái dấu nhau
Thấy x+3>x-1
=> \(\hept{\begin{cases}x+3>0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 1\end{cases}\Leftrightarrow}-3< x< 1}\)
*) Để (x-4)(x+3)>0
=> x-4 và x+3 cùng dấu
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x-4>0\\x+3>0\end{cases}}\\\hept{\begin{cases}x-4< 0\\x+3< 0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x>4\\x>-3\end{cases}}\\\hept{\begin{cases}x< 4\\x>-3\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>4\\-3< x< 4\end{cases}}}\)