Những câu hỏi liên quan
TN
Xem chi tiết
AH
1 tháng 11 2019 lúc 0:22

Lời giải:

ĐKXĐ: $x\geq 2$ hoặc $x\leq 1$

Đặt $\sqrt{x^2-3x+2}=a(a\geq 0)\Rightarrow x^2-3x-4=a^2-6$

Phương trình đã cho trở thành:

\(a=a^2-6\)

\(\Leftrightarrow a^2-a-6=0\Leftrightarrow a(a-3)+2(a-3)=0\)

\(\Leftrightarrow (a-3)(a+2)=0\Rightarrow a=3\) (do $a\geq 0$)

\(\Leftrightarrow \sqrt{x^2-3x+2}=3\)

\(\Rightarrow x^2-3x+2=9\)

\(\Leftrightarrow x^2-3x-7=0\Rightarrow x=\frac{3\pm \sqrt{37}}{2}\) (đều thỏa mãn)

Vậy.........

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
1 tháng 9 2023 lúc 13:54

Để giải phương trình này bằng đặt ẩn phụ, chúng ta sẽ đặt ẩn phụ là một biến mới, ví dụ như u. Sau đó, ta thực hiện phép đặt ẩn phụ bằng cách thay thế x = u - 11. Bằng cách này, ta có thể chuyển phương trình ban đầu thành một phương trình bậc nhất với ẩn phụ u.

Bình luận (0)
HV
Xem chi tiết
NQ
14 tháng 1 2018 lúc 20:41

Đk : với mọi x

Đặt \(\sqrt{x^2-3x+3}=a\)

pt trở thành : a+\(\sqrt{a^2+3}\)=3

<=> \(\sqrt{a^2+3}\)= 3-a

=> a^2+3 = 9-6a+a^2

<=> a^2+3-(9-6a+a^2)=0

<=> 6a-6=0

<=> 6a=6

<=> a=1

<=> \(\sqrt{x^2-3x+3}\)=1

<=> x^2-3x+3=1

<=> x^2-3x+2=0

<=> (x-1).(x-2) = 0

<=> x=1 hoặc x=2

Thử lại thì đều tm

Vậy .............

Tk mk nha

Bình luận (0)
H24
14 tháng 1 2018 lúc 21:51

bài quân thêm đk a>=0 ; và khi bình phương thì 3-a >=0

Bình luận (0)
HH
Xem chi tiết
MD
14 tháng 7 2017 lúc 15:30

Đặt \(\sqrt{x^2+9}=a\) ( \(a\ge9\) ) => \(x^2+9=a^2\)

Đặt \(3x+5=b\) => \(2x+3=\dfrac{2}{3}a-\dfrac{1}{3}\)

Ta có; \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)

<=> \(2ab=3a^2+\left(\dfrac{2}{3}b-\dfrac{1}{3}\right)\)

<=> \(6ab=9a^2+2b-1\)

<=> \(\left(9a^2-1\right)-\left(6ab-2b\right)=0\)

<=> \(\left(3a-1\right)\left(3a+1\right)-2b\left(3a-1\right)=0\)

<=> \(\left(3a-1\right)\left(3a+1-2b\right)=0\)

<=> \(\left[{}\begin{matrix}3a=1\left(1\right)\\3a-2b=-1\left(2\right)\end{matrix}\right.\)

(1) => \(3\sqrt{x^2+9}=1\) => Vô nghiệm ( vì \(\sqrt{x^2+9}\ge9\) )

(2) => \(3\sqrt{x^2+9}-2\left(3x+5\right)=-1\)

=> \(x=0\) (TM)

P/s: Mk nghĩ vì bn khá giỏi nên mk sẽ lm hơi tắt!

Bình luận (5)
LF
14 tháng 7 2017 lúc 15:46

\(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)

\(\Leftrightarrow2\left(3x+5\right)\sqrt{x^2+9}-30=3x^2+2x\)

\(\Leftrightarrow\dfrac{4\left(3x+5\right)^2\left(x^2+9\right)-900}{2\left(3x+5\right)\sqrt{x^2+9}+30}=x\left(3x+2\right)\)

\(\Leftrightarrow\dfrac{36x^4+120x^3+424x^2+1080x}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)

\(\Leftrightarrow\dfrac{4x\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)

\(\Leftrightarrow x\left(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)\right)=0\)

Dễ thấy: \(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)>0\)

\(\Rightarrow x=0\)

Bình luận (1)
HM
Xem chi tiết
NH
Xem chi tiết
DT
Xem chi tiết
BN
Xem chi tiết
DH
3 tháng 12 2019 lúc 9:26

Chương 1: MỆNH ĐỀ, TẬP HỢP

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết