Tim x:
a/\(4^{x+3}-248=2^{x+1}\)
b/\(9^{x+2}-54=3^{2x+3}\)
c/\(4^{x-1}+16=2^{2x+1}\)
Tìm x:
a. \(\sqrt{9x^2}=2x+1\)
b. \(\sqrt{x^2+6x+9}=3x-1\)
c. \(\sqrt{x^2-2x+4}=2x-3\)
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
Tìm x:
a) (2x - 1) (x^2 - x + 1) = 2x^3 - 3x^2 + 2
b) (x + 1) (x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
c) (x + 1) (x + 2) (x + 5) - x^3 - 8x^2 = 27
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
tim x:a,(x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
b,(x-2)3-(x-3)(x2+3x+9)+6(x+1)2=49
b)(x-2)3-(x-3)(x2+3x+9)+6(x+1)2=49
(=) x3- 6x2 +12 x -8 - ( x3 - 27 ) + 6( x2 + 2x +1)
(=) x3 - 6x2 +12x -8 - x3 +27 + 6x2 +12x +6
(=) 24x + 25 = 49
(=) 24x = 49 - 25 = 24
(=) x = 24/24 =1
Bài 4: tìm x:
a) \(\dfrac{4}{3}\) + (1,25 - x) = 2,25
b) \(\dfrac{17}{6}\) - (x - \(\dfrac{7}{6}\) ) = \(\dfrac{7}{4}\)
c) 4 - (2x + 1) = 3 - \(\dfrac{1}{3}\)
bài 15:
a) (\(\dfrac{-2}{3}\))9 : x = (\(\dfrac{-2}{3}\))
b) x : (\(\dfrac{4}{9}\))5 = (\(\dfrac{4}{9}\))4
c) (x + 4)3 = -125
d) (10 - 5x)3 = 64
e) (4x + 5)2 = 81
Bài 16:
a) 4 - \(1\dfrac{2}{5}\) - \(\dfrac{8}{3}\)
b) -0,6 - \(\dfrac{-4}{9}\) - \(\dfrac{16}{15}\)
c) \(-\dfrac{15}{4}\) . (\(\dfrac{-7}{15}\)) . (\(-2\dfrac{2}{5}\)
Gi ải gấp giúp mình ạ, mình rất cần gấp
Bài 4:
a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)
\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)
\(1,25-x=\dfrac{11}{12}\)
\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)
\(x=\dfrac{1}{3}\)
b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)
\(x-\dfrac{7}{6}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)
\(x=\dfrac{27}{12}=\dfrac{9}{4}\)
c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)
\(4-\left(2x+1\right)=\dfrac{8}{3}\)
\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)
\(2x+1=\dfrac{20}{3}\)
\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)
\(2x=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)
Bài 15:
a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)
\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)
\(=>x=\left(\dfrac{-2}{3}\right)^8\)
b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)
\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)
\(=>x=\left(\dfrac{4}{9}\right)^9\)
c) \(\left(x+4\right)^3=-125\)
\(\left(x+4\right)^3=\left(-5\right)^3\)
\(=>x+4=-5\)
\(x=-5-4\)
\(=>x=-9\)
d) \(\left(10-5x\right)^3=64\)
\(\left(10-5x\right)^3=4^3\)
\(=>10-5x=4\)
\(5x=10-4\)
\(5x=6\)
\(=>x=\dfrac{6}{5}\)
e) \(\left(4x+5\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)
Bài 16:
a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)
\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)
\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)
b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)
\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)
\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)
c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)
\(=\dfrac{7}{4}.\dfrac{-12}{5}\)
\(=\dfrac{-21}{5}\)
\(#Wendy.Dang\)
1)rút gọn
a)(x-3)(x+4)+(x-5)(x+1)
b)(5x3+14x2+12x+8):(x+2)
2)A=x2-1/3x+1.Chứng tỏ A> 0 với mọi x.tìm giá trị nhỏ nhất của A
3)(x^4+2x^3+10x-25):(x^2+5)
4)Tim x:a)x(1-2x)+(x-2)(2x-3)=0
Tìm x:
a) 2/5 = 3/4 : x = -1/2
b) 5/7 - 2/3 . x = 4/5
c) 1/2x + 3/5x = -2/3
d) 4/7x - x = -9/14
b: \(\dfrac{5}{7}-\dfrac{2}{3}\cdot x=\dfrac{4}{5}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{7}-\dfrac{4}{5}=\dfrac{25-28}{35}=\dfrac{-3}{35}\)
=>\(x=-\dfrac{3}{35}:\dfrac{2}{3}=\dfrac{-3}{35}\cdot\dfrac{3}{2}=-\dfrac{9}{70}\)
c: \(\dfrac{1}{2}x+\dfrac{3}{5}x=-\dfrac{2}{3}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{3}{5}\right)=-\dfrac{2}{3}\)
=>\(x\cdot\dfrac{5+6}{10}=\dfrac{-2}{3}\)
=>\(x\cdot\dfrac{11}{10}=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}:\dfrac{11}{10}=-\dfrac{2}{3}\cdot\dfrac{10}{11}=\dfrac{-20}{33}\)
d: \(\dfrac{4}{7}\cdot x-x=-\dfrac{9}{14}\)
=>\(\dfrac{-3}{7}\cdot x=\dfrac{-9}{14}\)
=>\(\dfrac{3}{7}\cdot x=\dfrac{9}{14}\)
=>\(x=\dfrac{9}{14}:\dfrac{3}{7}=\dfrac{9}{14}\cdot\dfrac{7}{3}=\dfrac{3}{2}\)
(5.x-1):3+1=4
b 54:(16-x)-1=5
c 3^2.x+15=60'''2x^3=54
e 2^x+1=64
Tìm x:
a)3.(x-2)+2.(x-3)=5
b)(2x-8)2-16=0
c)(2x-1)2-(4x+1).(x-3)=3
a)3(x-2)+2(x-3)=5
=>3x-6+2x-6=5
=>5x=17
=>x=17/5
b)(2x-8)^2=16
TH1:2x-8=4=>x=6
TH2:2x-8=-4=>x=2
\(a,\Leftrightarrow3x-6+2x-6=5\\ \Leftrightarrow5x-12=5\\ \Leftrightarrow x=\dfrac{17}{5}\\ b,\left(2x-8\right)^2-16=0\\ \Leftrightarrow\left(2x-12\right)\left(2x-4\right)=0\\ \Leftrightarrow4\left(x-6\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-4x+1-4x^2+11x+3=3\\ \Leftrightarrow7x=-1\\ \Leftrightarrow x=-\dfrac{1}{7}\)
Bài 2: Tìm x, biết: a) (x+2)(x² -2x+4)-x(x²+2)=15 b) (x-2)³-(x-4)(x² + 4x+16) + 6(x+1)=49 c) (x - 1)³ + (2 - x)(4 + 2x + x²)+ 3x(x + 2) = 16 d) (x - 3)³ - (x - 3)(x² + 3x + 9) + 9(x + 1)² = 15
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)