cm căn ((a+b)/c)+căn((b+c)/a)+căn((c+a)/b)>=3/2 (a,b,c>0)
cho a,b,c> hoặc=0 và a+b+c=2 CM 2 căn 2< hoặc= căn(a+b) + căn(b+c) + căn(c+a)< hoặc= 2 căn 3
CM: 16^a +16^b +16^c >= 2^a+ 2^b +2^c, biết a+b+c= 0
cho a,b,c>0. CM: a/b + b/a + a/c>= căn a/b + căn b/a+ căn a/c
Cho a, b,c, d >0 cm
Căn(a/b+c+d) + căn(b/a+c+d) + căn(c/a+b+d) + căn(d/a+b+c) > 2
Cố gắng giúp mik nhé. Mik đang ôn thi
CM: 16^a +cho a,b,c>0.1 6^b +16^c >= 2^a+ 2^b +2^c, biết a+b+c= 0
CM: a/b + b/a + a/c>= căn a/b + căn b/a+ căn a/c
cho a,b,c>0 và a+b=(căn a+căn b-căn c)^2;căn a+căn b# căn c;b#c Rút gon a+(căn a-căn c)^2/b(căn b-căn c)^2
Cho a,b,c>0 thỏa mãn a+b+c=3.Tìm gtln :
A= căn(a^2/a^2+b+c^2) + căn(b^2/b^2+c+a^2)+căn(c^2/c^2+a+b^2)
a,b,c>0. a^2+b^2+c^2=3. Cm a+b+c> căn 3
Ta có: a2+b2+c2 ≥ ab+bc+ca
⇒ 3(a2+b2+c2) ≥ a2+b2+c2+2(ab+bc+ca) = (a+b+c)2 = 32 = 9
⇒ a2+b2+c2 ≥ 3
cho a,b,c>0 CMR căn(a*(b+1))+căn(b(c+1)+căn(c(a+1))<=3/2(a+1)(b+1)(c+1)
cho a,b,c là 3 số thực không âm thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c)