Cho hàm số y=5x2-4
a) Chứng tỏ : f(x) = f(-x)
b) Giả sử x1<x2<0. Chứng tỏ f(x1)>f(x2)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số y=f(x)=2x-3. X lấy giá trị thực bất kì x1, x2 sao cho x1 < x2. Chứng tỏ f(x1) < f(x2). Kết luận về tính biến thiên của hàm số
Viết công thức của hàm số y = f(x) biết rằng y tỷ lệ thuận với x theo hệ số tỷ lệ a/ Tìm x để f(x) = -5 b/ Chứng tỏ rằng nếu x1> x2 thì f(x1) > f(x2)
Cho hàm số y = f(x) = 1/2x.
chứng tỏ rằng x1 > x2 thì f(x1) > f(x2)
cảm ơn vì đã giải nha :) :)
Ta co: y = 1/2 x
khi x1 > x2 thi suy ra:
1/2.x1 > 1/2 . x2 (dpcm)
Viết công thức hàm y = f(x) biết y tỉ lệ thuận vs x theo hệ số tỉ lệ k = 1/2
a) Tìm x để f(x) = -5
b) Chứng tỏ rằng nếu : x1 > x2 => f(x1) > f(x2)
Cho hàm số y=f(x)=-5x
Chứng minh:
a) Hàm số là hàm số nghịch biến
b) f(x1+4x2)=f(x1)+4f(x2)
c) -f(x)=f(-x)
Cái này nhớ không nhầm là toán 7 :>
a) Gọi x1 và x2 là hai gtrị tương ứng của x
Giả sử x1<x2
Vì y=f(x) =-5x
\(\Rightarrow\)f(x1)=-5x1
\(\Rightarrow\)f(x2)=-5x2
mà x1<x2 \(\Rightarrow\)f(x1)>f(x2)
\(\Rightarrow\)Hs là hs nghịch biến
b) Vì y=f(x)=-5x
\(\Rightarrow\)f(x1)+4f(x2)
=-5x1+4(-5)x2
=-5(x1+4x2) (*)
\(\Rightarrow\)f(x1+4x2)=-5(x1+4x2) (**)
Từ (*), (**) \(\Rightarrow\)f(x1+4x2)=f(x1)+4f(x2)
c) Vì y=f(x)=-5x
\(\Rightarrow\)-f(x)=5x (*)
\(\Rightarrow\)f(-x)=-5(-x) =5x (**)
Từ (*) và (**) \(\Rightarrow\)-f(x) =f(-x)
Viết công thức hàm y = f(x) biết y tỉ lệ thuận vs x theo hệ số tỉ lệ k = 1/4
a) Tìm x để f(x) = -5
b) Chứng tỏ rằng nếu : x1 > x2 => f(x1) > f(x2)
giúp mình với đúng mình dùng 3 acc tick cho
y/x =k=1/4
y= f(x) =x/4
a) y = -5 =x/4 => x = -20
b) t đi, rùi làm tiếp
Cho hàm số y = f(x) = kx (k là hằng số, k ( 0). Chứng minh rằng:
a/ f(10x) = 10f(x)
b/ f(x1 + x2) = f(x1) + f(x2)
c/ f(x1 - x2) = f(x1) - f(x2)
Giả sử f(x) là hàm số liên tục trên đoạn [a; b], F(x) và G(x) là hai nguyên hàm của f(x). Chứng minh rằng F(b) – F(a) = G(b) – G(a), (tức là hiệu số F(b) – F(a) không phụ thuộc việc chọn nguyên hàm).
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).
Cho hàm số y = f ( x ) = − 5 x 2 − 7 . So sánh f ( x ) ; f ( − x ) + 2
A. f ( x ) = f ( − x ) + 2
B. f ( x ) > f ( − x ) + 2
C. f ( x ) < f ( − x ) + 2
D. f ( x ) ≤ f ( − x ) + 2