Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TD
Xem chi tiết
H24
Xem chi tiết
NL
29 tháng 4 2021 lúc 18:40

Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)

Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)

Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)

Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)

\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)

Bình luận (0)
TH
Xem chi tiết
TV
Xem chi tiết
DN
11 tháng 7 2016 lúc 20:58

1) = xy +1 -x -y =0

y(x-1) -(x-1) = (x-1)(y-1)=0

x =1

y=1

Bình luận (0)
BR
11 tháng 7 2016 lúc 21:14

các bn giỏi toán thân mến,các bn hỏi toán đã biến chúng ta thành osin ,làm k công,chúng ta cứ cày đầu giải còn năn nỉ công nhận,

tui nghĩ chất sám có giá trị cao nhât nên chỉ giải cho các bn giỏi hieu ,còn lại k cần năn nỉ loại ngu công nhận vi chúng chẳng hieu j,

học toán mà k chịu suy nghĩ thi còn lâu moi giỏi

Bình luận (0)
DN
Xem chi tiết
QT
Xem chi tiết
LP
2 tháng 6 2023 lúc 19:52

\(x^2+xy+y^2=x+y\)

\(\Leftrightarrow2x^2+2xy+2y^2-2x-2y=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

Tới đây do \(2=1^2+1^2+0^2\) , đồng thời để ý rằng vai trò \(x,y\) như nhau nên ta sẽ có 2TH

 TH1: \(x+y=0\) và \(\left(x-1\right)^2+\left(y-1\right)^2=1^2+1^2\)   (1)

khi đó \(y=-x\) nên \(x-1\ne y-1\). Do đó từ (1), giả sử \(x\ge y\) suy ra \(\left\{{}\begin{matrix}x-1=1\\y-1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\), vô lí. Làm tương tự với \(y\ge x\)

 TH2: \(x+y\ne0\). Khi đó \(x+y=\pm1\)

    TH2.1: \(x+y=1\). Khi đó từ (1), suy ra 1 trong 2 số \(x-1,y-1\) phải bằng 0. Do vai trò x, y như nhau nên giả sử \(x-1=0\)\(\Leftrightarrow x=1\), khi đó \(y=0\), thỏa mãn. Ta tìm được nghiệm \(\left(x;y\right)=\left(1;0\right)\). Tương tự, tìm được nghiệm \(\left(x;y\right)=\left(0;1\right)\)

    TH2.2: \(x+y=-1\). Giả sử \(x-1=0\) \(\Leftrightarrow x=1\), khi đó \(y=-2\), loại.

 Như vậy, pt đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)

 

Bình luận (0)
LP
2 tháng 6 2023 lúc 20:04

Cách thứ 2 nhé:

\(x^2+xy+y^2=x+y\)

\(\Leftrightarrow x^2+\left(y-1\right)x+y^2-y=0\)

\(\Delta=\left(y-1\right)^2-4\left(y^2-y\right)\) \(=\left(y-1\right)^2-4y\left(y-1\right)\) \(=\left(y-1\right)\left[\left(y-1\right)-4y\right]\) \(=\left(y-1\right)\left(-1-3y\right)\)

Để pt đã cho có nghiệm thì \(\Delta=-\left(y-1\right)\left(3y+1\right)\ge0\) \(\Leftrightarrow\left(y-1\right)\left(3y+1\right)\le0\) \(\Leftrightarrow-\dfrac{1}{3}\le y\le1\). Do \(y\inℤ\) nên \(y\in\left\{0;1\right\}\). Nếu \(y=0\) thì thay vào pt đầu, dễ dàng suy ra \(x=1\). Còn nếu \(y=1\) thì cũng dễ dàng suy ra \(x=0\).

Vậy ohương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)

Bình luận (0)
HH
Xem chi tiết
NP
30 tháng 8 2016 lúc 15:31

bài x^4-7^y=2014 dùng đồng dư là ra nhé bạn

Bình luận (0)
PA
31 tháng 8 2016 lúc 19:30

mình cũng chịu

Bình luận (0)
H24
6 tháng 11 2017 lúc 15:57

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

Bình luận (0)
PV
Xem chi tiết
4Q
Xem chi tiết
SO
9 tháng 3 2022 lúc 19:15

(x+3)(y+2)=1
⇒(x+3)∈Ư(1)={-1:1}
Ta có bảng sau:
 

x+31-1
y+21-1
x-2-4
y-1-3
Nhận xétChọnChọn


Vậy ...

 

 

Bình luận (0)