Tìm GTNN hoặc GTLN trong biểu thức sau \(x^2-4x+5+y^2+2y\)
Tkm GTNN hoặc GTLN của biểu thức sau:
E= -x^2 -4x - y^2 +2y+2019
F= (x-1)(x-3)+2020
Tìm GTLN hoặc GTNN của các biểu thức sau
1) x.(x+1) + 5
2) -x2 - 4x + 9
3) x2 - 4x +7 + y2 +2y
\(1,A=x\left(x+1\right)+5\)
\(=x^2+x+5\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dâu = xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(Min_A=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(2,B=-x^2-4x+9\)
\(=-\left(x^2+4x+4\right)+13\)
\(=-\left(x+2\right)^2+13\)
Ta có :\(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2+13\le13\)
Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_B=13\Leftrightarrow x=-2\)
\(3,C=x^2-4x+7+y^2+2y\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+2\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+2\)
Ta có :
\(\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy \(Min_C=2\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
a) \(x\left(x+1\right)+5\)
\(=x^2+x+5\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}\)
\(=\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{19}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Vậy GTNN của biểu thức trên bằng \(\dfrac{19}{4}\) khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
b) \(-x^2-4x+9\)
\(=-x^2-4x-4+13\)
\(=-\left(x^2+4x+4\right)+13\)
\(=-\left(x^2+2.x.2+2^2\right)+13\)
\(=-\left(x+2\right)^2+13\)
Vậy GTLN của biểu thức trên bằng \(13\) khi \(x+2=0\Leftrightarrow x=-2\)
Tìm GTLN hoặc GTNN của các biểu thức sau:
1, C=-4-x2+6x
2, D=|x-3|.(2-|x-3|)
3, E= -x2-4x-y2+2y
1) \(C=-\left(x^2-6x+9\right)+5\)
\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)
Vậy GTLN của C là 5 <=> x=3
3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)
\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)
Vậy GTNN của E bằng 5 <=> x=-2 và y=1
Dương: Câu c là GTLN em nhé :)
b. Ta chia ra thành các trường hợp:
- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)
- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)
Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.
Chúc em học tốt :))
Bài 6:Tìm GTLN,GTNN (nếu có) trong các biểu thức sau:
a)A=-4-x^2+6x
b)B=3x^2-5x+7
c)C=/x-3/(2-/x-3/)
d)D=(x-1)(x+5)(x^2+4x+5)
e)E=-x^2-4x-y^2+2y
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
Tìm GTNN hoặc GTLN của biểu thức sau
M=3x^4+y^2-2x^2y-2x^2-2y+31
Tìm GTLN hoặc GTNN của các biểu thức sau:
A=1-4x+x^2
B=-2x^2+2x
C=2x^2+y^2+2x+2y
D= x^2 - 4xy + 5y^2 -y
A = x2 - 4x + 1 = (x2 - 2.x.2 + 4) - 3 = (x - 2)2 - 3 \(\ge\) -3
Vậy: GTNN của A là -3 (tại x = 2)
B = -2x2 + 2x = -2(x2 - x) = -2\(\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
= -2\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\) \(\le\frac{1}{2}\)
Vậy: GTLN của B là \(\frac{1}{2}\) tại x = \(\frac{1}{2}\)
C = x2 + y2 + 2x + 2y = (x2 + 2x + 1) + (y2 + 2y + 1) - 2
= (x + 1)2 + (y + 1)2 - 2 \(\ge\) -2
Vậy: GTNN của C là -2 tại x = -1 ; y = -1
D = x2 - 4xy + 5y2 - y = (x2 - 4xy + 4y2) + (y2 - y + \(\frac{1}{4}\)) - \(\frac{1}{4}\)
= (x - 2y)2 + (y - \(\frac{1}{2}\))2 - \(\frac{1}{2}\ge-\frac{1}{2}\)
Vậy: GTNN của D là \(\frac{-1}{4}\) tại x = 1 ; y = \(\frac{1}{2}\)
Tìm GTLN (hoặc GTNN) của biểu thức sau:
\(M=4x^2+4x+5\)
M = 4x2 + 4x + 5
M = (4x2 + 4x + 1) + 4
M = (2x + 1)2 + 4
Vì (2x + 1)2 ≥ 0
=> (2x + 1)2 + 4 ≥ 4 <=> M ≥ 4
=> GTNN của M bằng 4
Dấu "=" xảy ra khi\(\left(2x+1\right)^2=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTNN của M bằng 4
À thôi không cần giải nữa mình ra kết quả rồi
\(M=4x^2+4x+1+4\)
\(M=\left(2x+1\right)^2+4\)
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)
dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
Vậy GTNN của M=4 khi và chỉ khi \(x=\frac{1}{2}\)hay \(x=-\frac{1}{2}\)
Tìm GTLN của biểu thức:
-2x^2 - y^2 - 2xy + 4x + 2y + 2
Tìm GTNN của biểu thức:
x^2 - 4xy + 5y^2 + 10x - 22y + 27
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
cho x,y thỏa mãn (x^2-y^2+1)^2+4x^2y^2-x^2-y^2=0
Tìm GTNN,GTLN của biểu thức x^2+y^2