Những câu hỏi liên quan
TT
Xem chi tiết
NT
27 tháng 11 2020 lúc 21:32

3x^3 + 2x^2 - 7x + a 3x - 1 x^2 + x - 2 3x^3 - x^2 3x^2 - 7x 3x^2 - x -6x + a -6x + 2 a - 2

Để : \(3x^3+2x^2-7x+a⋮3x-1\)<=> \(a-2=0\)

<=> \(a=2\)

Vậy a = 2 

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 11 2020 lúc 21:42

3x^3 + 3x^2 + 5x + a x + 3 3x^2 - 6x + 22 3x^3 + 9x^2 -6x^2 + 5x -6x^2 - 18x 22x + a 22x + 66

Để \(x^3+3x^2+5x+a⋮x+3\)<=> \(a-66=0\)

<=> \(a=66\)

Vậy a = 66

Bình luận (0)
 Khách vãng lai đã xóa
NE
Xem chi tiết
NT
4 tháng 2 2023 lúc 10:09

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 11 2022 lúc 22:56

a: =>3x^3-x^2+3x^2-x-6x+2+m-2 chia hết cho 3x-1

=>m-2=0

=>m=2

b: =>\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2+3x-1-6x+a+1⋮x^2+3x-1\)

=>-6x+a+1=0

=>6x=a+1

=>x=(a+1)/6

Bình luận (0)
TL
Xem chi tiết
NT
17 tháng 12 2022 lúc 12:42

a: =>2x^3-4x^2-3x^2+6x+4x-8+a+8 chia hết cho x-2

=>a+8=0

=>a=-8

b: =>2x^3+x^2-x^2-0,5x-0,5x+0,25+m-0,25 chia hết cho 2x+1

=>m-0,25=0

=>m=0,25

Bình luận (0)
NN
Xem chi tiết
NR
Xem chi tiết
NM
19 tháng 12 2021 lúc 22:11

\(M⋮N\\ \Rightarrow3x^3+4x^2-7x+5⋮x-3\\ \Rightarrow3x^3-9x^2+13x^2-39x+32x-96+101⋮x-3\\ \Rightarrow3x^2\left(x-3\right)+13x\left(x-3\right)+32\left(x-3\right)+101⋮x-3\\ \Rightarrow x-3\inƯ\left(101\right)=\left\{-101;-1;1;101\right\}\\ \Rightarrow x\in\left\{-98;2;4;104\right\}\)

Bình luận (0)
NT
19 tháng 12 2021 lúc 22:19

\(x\in\left\{-98;2;4;104\right\}\)

Bình luận (0)
BV
Xem chi tiết
NC
21 tháng 10 2018 lúc 15:07

Thực hiện phép chia đa thức, ta có:

\(3x^3+2x^2-7x+a=\left(3x-1\right).\left(x^2+x-2\right)+a-2\)

Để đa thức \(3x^3+2x^2-7x+a\)chia hết cho đa thức 3x-1  thì a-2=0=> a=2

Bình luận (0)
KN
9 tháng 11 2019 lúc 19:51

Đặt \(f\left(x\right)=3x^3+2x^2-7x+a\)

Áp dụng định lý Bezout:

\(f\left(x\right)=3x^3+2x^2-7x+a\)chia hết cho đa thức 3x - 1

\(\Leftrightarrow f\left(\frac{1}{3}\right)=0\)

\(\Leftrightarrow3.\left(\frac{1}{3}\right)^3+2.\left(\frac{1}{3}\right)^2-7.\frac{1}{3}+a=0\)

\(\Leftrightarrow\frac{1}{9}+\frac{2}{9}-\frac{7}{3}+a=0\)

\(\Leftrightarrow\frac{1}{3}-\frac{7}{3}+a=0\)

\(\Leftrightarrow-2+a=0\)

\(\Leftrightarrow a=2\)

Vậy a = 2 thì ​\(f\left(x\right)=3x^3+2x^2-7x+a\)​chia hết cho đa thức 3x - 1
 

Bình luận (0)
 Khách vãng lai đã xóa
YC
Xem chi tiết
AH
17 tháng 10 2018 lúc 8:31

Lời giải:

a)

\(2(x+3)-x^2-3x=0\)

\(\Leftrightarrow 2(x+3)-(x^2+3x)=0\)

\(\Leftrightarrow 2(x+3)-x(x+3)=0\Leftrightarrow (2-x)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} 2-x=0\\ x+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b)

Theo định lý Bê-du về phép chia đa thức thì để đa thức đã cho chia hết cho $3x-1$ thì:

\(f(\frac{1}{3})=3.(\frac{1}{3})^3+2(\frac{1}{3})^2-7.\frac{1}{3}+a=0\)

\(\Leftrightarrow -2+a=0\Leftrightarrow a=2\)

c) Ta có:

\(2n^2+3n+3\vdots 2n-1\)

\(\Leftrightarrow 2n^2-n+4n+3\vdots 2n-1\)

\(\Leftrightarrow n(2n-1)+(4n-2)+5\vdots 2n-1\)

\(\Leftrightarrow n(2n-1)+2(2n-1)+5\vdots 2n-1\)

\(\Leftrightarrow 5\vdots 2n-1\Rightarrow 2n-1\in \text{Ư}(5)\)

\(\Rightarrow 2n-1\in\left\{\pm 1; \pm 5\right\}\Rightarrow n\in\left\{0; 1; 3; -2\right\}\)

Vậy.................

Bình luận (1)
LT
Xem chi tiết