cho hàm số:
y = mx + 1 (1) (m là tham số)
a) Tìm m để đổ thị hàm số (1) đi qua A(1 ; 4) với giá trị m vừa tìm được hàm số (1) đồng biến hay nghịch biến
b) Tìm m để đô thị hàm số (1) // (d) y = m^2 x X + m + 1
Cho hàm số bậc nhất y= (a+2)x-a+1 có đồ thị là đường thẳng (d) a) Tìm a để hàm số nghịch biến trên R; b) Tìm a để đường thẳng (d) đi qua điểm M(-1,-4)
Lời giải:
a. Để hàm số nghịch biến trên R thì:
$a+2<0$
$\Leftrightarrow a< -2$
b.
Để $(d)$ đi qua $M(-1;-4)$ thì:
$y_M=(a+2)x_M-a+1$
$\Leftrightarrow -4=(a+2)(-1)-a+1$
$\Leftrightarrow a=\frac{3}{2}$
Cho hàm số: y=(m-1)x+m (d)
a, Tìm m để hàm số đồng biến, nghịch biến
b, Tìm m để hàm số song song với trục hoành
c, Tìm m để đồ thị hàm số đi qua điểm A(-1;1)
d, Tìm m để đồ thị hàm số song song với đường thẳng có phương trrình: x-2y=1
e, Tìm m để đồ thị hàm số cắt trục hoành tại điểm A có hoành độ \(x=2-\frac{\sqrt{3}}{2}\)
f, Chứng minh rằng đường thẳng (d) luôn đi qua điểm cố định khi m thay đổi
cho hàm số y=(m-1)x 4 (m là tham số, m khác 1) cso đồ thị là đường thẳng (d)
a)t tìm m để đường thẳng (d) song song với đường thẳng y=2x-3 . Hãy vẽ đồ thị hà số với giá trị m vừa tìm được
b) tìm m để khoảng cách từ gốc tòa độ đến đường thẳng (d) bằng 2
cho hàm số y = 2x+2 có đồ thhij là (d) và hàm số y = -x-1 có đồ thị là (d1)
a, vẽ (d) và (d1) trên cùng 1 mặt phẳng tọa độ trên tọa độ giao điểm của (d) và (d1) bằng phép toán
b, cho hàm số y=(m^2-11) x+m-5 (m là hàm số) co đò thị là (d2).tìm m để đt (d2) cắt đt (d).tìm m dể đt (d2) song song với đường thẳng (d)
Câu 13: Tìm m để đồ thị hàm số f (x)=(m−1)x+2m+2 đi qua điểm A(1;4)
Thay x=1 và y=4 vào f(x), ta được:
m-1+2m+2=4
hay m=1
Cho hàm số:y=1/2x.Biết điểm M(-4;m) thuộc đồ thị hàm số đã cho.Tìm m
Cho hàm số y = 1 3 x 3 - 1 2 2 m + 4 x 2 + m 2 + 4 m + 3 x + 1
(m là tham số). Tìm m để
hàm số đạt cực đại tại x 0 = 2
A. m = 1
B. m = - 2
C. m = - 1
D. m = 2
Cho hàm số y = - x 3 + 3 x 2 + m (m là tham số) có đồ thị (C). Gọi A, B là các điểm cực trị của đồ thị (C). Khi đó, số giá trị của tham số m để diện tích tam giác OAB (O là gốc tọa độ) bằng 1 là:
A. 0
B. 2
C. 1
D. 3
Cho hàm số y = x 2 + m ( 2018 - x 2 + 1 ) - 2021 với m là tham số thực. Gọi S là tổng tất cả các giá trị nguyên của tham số m để đồ thị của hàm số đã cho cắt trục hoành tại đúng hai điểm phân biệt. Tính S.
A. 960
B. 986
C. 984
D. 990