là phân tích đa thức sau thành nhân tử:\(\left(a^2+a\right)^2+4\left(a^2+a\right)-12\)
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
\({a^2} + ab + 2a + 2b = \left( {{a^2} + ab} \right) + \left( {2a + 2b} \right) = ...\)
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
`a^2 + ab + 2a + 2b = a(a+2) + b(a+2) = (a+b)(a+2)`
phân tích đa thức sau thành nhân tử
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
phân tích đa thức thành nhân tử:
\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2+b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2\right)+b^4\left(b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)-b^4\left(b^2-c^2\right)-b^4\left(a^2-b^2\right)+c^4\left(a^2-b^2\right)\)
\(=\left(a^4-b^4\right)\left(b^2-c^2\right)+\left(c^4-b^4\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(b^2-c^2\right)-\left(b^2-c^2\right)\left(c^2+b^2\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2+b^2-c^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2-c^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)\left(b+c\right)\left(a-c\right)\left(a+c\right)\)
Phân tích đa thức sau thành nhân tử
\(A=a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(A=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(A=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)
\(A=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]\)
\(A=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)
Auto cách khác:3
\(A=a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(c+b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
phân tích đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ :
\(A=\left(x^2-3x+2\right)\left(x^2-3x-6\right)+12\)
Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)
=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
phân tích đa thức đa thức thành nhân tử
Phân tích các đa thức sau thành nhân tử:
a) \(4{x^2} - 1\)
b) \({\left( {x + 2} \right)^2} - 9\)
c) \({\left( {a + b} \right)^2} - {\left( {a - 2b} \right)^2}\)
a) \(4x^2-1=\left(2x+1\right)\left(2x-1\right)\)
b) \(\left(x+2\right)^2-9=\left(x-1\right)\left(x+5\right)\)
c) \(\left(a+b\right)^2-\left(a-2b\right)^2\)
\(=\left(a+b-a+2b\right)\left(a+b+a-2b\right)\)
\(=3b\left(2a-b\right)\)
`a, 4x^2-1 = (2x+1)(2x-1)`
`b, (x+2)^2-9 = (x+2-3)(x+2+3) = (x-1)(x+5)`
`c, (a+b)^2-(a-2b)^2 = (a+b+a-2b)(a+b-a+2b) = (2a-b)(3b)`
PHÂN TÍCH ĐA THỨC SAU THÀNH NHÂN TỬ:
\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2..\)
\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c\)
\(=\left(a+b\right)^2+2.c\left(a+b\right)+c^2+\left(a+b\right)^2-2.c\left(a+b\right)+c^2-4c^2\)
\(=a^2+2ab+b^2+2ca+2cb+c^2+a^2+2ab+b^2-2ca-2cb+c^2-4c^2\)
\(=2a^2+4ab+2b^2-2c^2\)
\(=2\left(a^2+2ab+b^2-c^2\right)\)
\(=2\left[\left(a+b\right)^2-c^2\right]\)
\(=2\left(a+b+c\right)\left(a+b-c\right)\)
Mn vào tcn của con này, https://olm.vn/thanhvien/kimmai123az, PTD/KM ?, nó chuyên đi copy bài của ng khác và câu hỏi tương tự
Phân tích đa thức sau thành nhân tử
\(B=\left(a^2+b^2\right)^3+\left(c^2-a^2\right)^3-\left(b^2+c^2\right)^3\)
\(B=\left(a^2+b^2\right)^3+\left(c^2-a^2\right)^3-\left(b^2+c^2\right)^3\)
\(=\left(a^2+b^2+c^2-a^2\right)\left[\left(a^2+b^2\right)^2-\left(c^2-a^2\right)\left(a^2+b^2\right)+\left(c^2-a^2\right)^2\right]-\left(b^2+c^2\right)^2\)
\(=\left(b^2+c^2\right)\left[\left(a^2+b^2\right)^2-\left(c^2-a^2\right)\left(a^2+b^2\right)+\left(c^2-a^2\right)^2\right]-\left(b^2+c^2\right)^2\)
\(=\left(b^2+c^2\right)\left(a^4+2a^2b^2+b^4-a^2c^2+a^4-b^2c^2+a^2b^2-b^4-2b^2c^2-c^4\right)\)
\(=\left(b^2+c^2\right)\left(2a^4-c^4+3a^2b^2-a^2c^2-3b^2c^2\right)\)
ko chắc