Tìm x,y,x biết:
x/y+z+1 = y/x+z+1 = z/x+y-2 = x+y+z
GIÚP MK NHA. THANKS
tìm x,y,z biết:x+y-3/z=y+z+2.x=x+z+1/y=1/x+y+z
Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.
Cảm ơn các em đã đồng hành cùng Olm.
Tìm x;y;z biết:x/z+y+1=y/x+z+1=z/x+y-2=x+y+z
ta có \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
=>\(\frac{x+y+z}{2x+2y+2z+1+1-2}=x+y+z\)
=>\(\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>\(\frac{1}{2}=x+y+z\)
Tìm x,y,z biết:X/Z+Y+1=Y/X+Z+1=Z/X+Y-1= X+Y+Z
tìm x,y,z biết:
x/y+z+1=y/x+z+2=z/x+y-2=x+y-3=x+y+z
Lm giúp mk vs nha.
a, tìm x,y,z biết:x/2=y/3; y/4=z/5 và x2-y2= -16
CÁC BẠN GIÚP MK NHA AI NHANH MK TICK CHO
Ta có: x/2=y/3 =>x/8=y/12 (1)
y/4=z/5 =>y/12=z/15 (2)
Từ 1 và 2 => x/8=y/12=z/15
=> (x/8)2=(y/12)2=z/15
hay x2/64=y2/144=z/15
Áp dụng t/c của dãy tỉ số bằng nhau,có
x2/64=y2/144=z/15=(x2 - y2)/(64 - 144)= -16/-80=1/5
Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5
=>x=\(\sqrt{\frac{64}{5}}\)
y2/144=1/5 => y2=144 . 1/5=144/5
=>y=\(\sqrt{\frac{144}{5}}\)
z/15 = 1/5 => z =15 . 1/5=3
mk lm sai thì thôi nha ^-^
Tìm x,y,z biết:
x^2/2 + y^2/3 + z^2/4 = x^2+y^2+z^2/5
Nhanh giúp mk nha,
Thanks!
Tìm x,y,z biết:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
GIÚP MK VS NHA!
Áp dụng ...............ta có :
x/z+y+1=y/x+z+1=z/x+y-2=1/2
+,x/z+y+1=1/2=>2x=z+y+1
=>2x-1=z+y
lại có x+y+z=1/2(1)=>x+2x-1=1/2
=>3x=1/2+1=3/2
=>x=3/2 /3=1/2
+,y/x+z+1=1/2=>2y=x+z+1
=>2y-1=x+z
Từ 1 =>2y-1+y=x+y+z
=>3y=1/2+1=3/2
=>y=3/2 /2 = 1/2
Thãy=1/2;y=1/2 vào 1 ta có :
1/2+1/2+z=1/2
z=1/2-1/2-1/2=-1/2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+x+y-2}=\frac{x+y+z}{2x+2y+2z}=\frac{x+y+z}{2\left(x+y+z\right)}=A\)
TH1: A = 0
< = > x = y = z = 0
Cho 3 số \(x,y,z\ne0\)thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính P = \((1+\frac{y}{x})\times(1+\frac{y}{z})\times(1+\frac{z}{x})\)
Các bạn giúp mk với nha , ngày mai mk phải nộp bài này rồi , nhớ ghi rõ cách giải nha
THANKS!!!
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
tìm các số thực x, y, z biết:
x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài