Những câu hỏi liên quan
NT
Xem chi tiết
NH
9 tháng 12 2024 lúc 6:25

Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.

Cảm ơn các em đã đồng hành cùng Olm.                        

Bình luận (0)
PD
Xem chi tiết
B8
28 tháng 2 2016 lúc 18:26

ta có \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)

=>\(\frac{x+y+z}{2x+2y+2z+1+1-2}=x+y+z\)

=>\(\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=>\(\frac{1}{2}=x+y+z\)

Bình luận (0)
HS
Xem chi tiết
HG
Xem chi tiết
JI
Xem chi tiết
PN
12 tháng 7 2018 lúc 10:19

Ta có: x/2=y/3 =>x/8=y/12  (1)

          y/4=z/5 =>y/12=z/15  (2)

Từ 1 và 2 => x/8=y/12=z/15

         => (x/8)2=(y/12)2=z/15

      hay  x2/64=y2/144=z/15

Áp dụng t/c của dãy tỉ số bằng nhau,có

 x2/64=y2/144=z/15=(x- y2)/(64 - 144)= -16/-80=1/5

Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5

                           =>x=\(\sqrt{\frac{64}{5}}\)

            y2/144=1/5 => y2=144 . 1/5=144/5

                             =>y=\(\sqrt{\frac{144}{5}}\)

            z/15 = 1/5 => z =15 . 1/5=3

  mk lm sai thì thôi nha ^-^

Bình luận (0)
NT
Xem chi tiết
MN
Xem chi tiết
H24
4 tháng 1 2016 lúc 18:20

Áp dụng ...............ta có :

x/z+y+1=y/x+z+1=z/x+y-2=1/2

+,x/z+y+1=1/2=>2x=z+y+1

                      =>2x-1=z+y

lại có x+y+z=1/2(1)=>x+2x-1=1/2

                             =>3x=1/2+1=3/2

                             =>x=3/2 /3=1/2

+,y/x+z+1=1/2=>2y=x+z+1

                      =>2y-1=x+z

 Từ 1    =>2y-1+y=x+y+z

            =>3y=1/2+1=3/2

           =>y=3/2 /2 = 1/2

Thãy=1/2;y=1/2 vào 1 ta có :

1/2+1/2+z=1/2

z=1/2-1/2-1/2=-1/2

Bình luận (0)
MT
4 tháng 1 2016 lúc 18:08

vận dụng dãy tỉ số bằng nhau pp ăn cơm

Bình luận (0)
NQ
4 tháng 1 2016 lúc 18:10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+x+y-2}=\frac{x+y+z}{2x+2y+2z}=\frac{x+y+z}{2\left(x+y+z\right)}=A\)

TH1: A = 0 

< = > x = y = z = 0 

 

Bình luận (0)
IL
Xem chi tiết
PQ
19 tháng 3 2018 lúc 20:30

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai 

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 9 2023 lúc 4:57

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

Bình luận (0)