Những câu hỏi liên quan
MS
Xem chi tiết
NM
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

Bình luận (0)
LL
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

Bình luận (0)
NT
11 tháng 10 2021 lúc 21:16

\(n^3+3n^2+2n\)

\(=n\left(n^2+3n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

Bình luận (0)
LG
Xem chi tiết
AH
19 tháng 10 2019 lúc 10:10

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
AH
3 tháng 10 2019 lúc 14:53

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
NT
26 tháng 10 2022 lúc 23:08

\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)

Vì n-2;n-3 là hai số liên tiếp

nên (n-2)(n-3) chia hết cho 2

=>A chia hết cho 2

TH1: n=3k

=>n-3=3k-3 chia hết cho 3

TH2: n=3k+1

=>2n+1=6k+2+1=6k+3 chia hết cho 3

TH3: n=3k+2

=>n+1=3k+3 chia hết cho 3

=>A chia hết cho 6

Bình luận (0)
H24
Xem chi tiết
AH
10 tháng 12 2023 lúc 17:00

Lời giải:
Vì $n, n+1$ là hai số tự nhiên liên tiếp nên trong đó sẽ tồn tại 1 số chẵn và 1 số lẻ.

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow n(n+1)(13n+17)\vdots 2(*)$

Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(13n+7)\vdots 3$

Nếu $n$ chia 3 dư $1$: Đặt $n=3k+1$ thì:

$13n+17=13(3k+1)+17=39k+30=3(13k+10)\vdots 3$

$\Rightarrow n(n+10)(13n+17)\vdots 3$

Nếu $n$ chia 3 dư $2$. Đặt $n=3k+2$ thì:

$n+1=3k+3=3(k+1)\vdots 3$

$\Rightarrow n(n+1)(13n+17)\vdots 3$

Vậy $n(n+1)(13n+17)\vdots 3$ với mọi $n$ tự nhiên $(**)$

Từ $(*); (**)\Rightarrow n(n+1)(13n+17)\vdots 6$.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 12 2019 lúc 15:10

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

Bình luận (0)
H24
Xem chi tiết
PA
15 tháng 9 2016 lúc 10:46

n3 - 13n

= n3 - n - 12n

= n(n2 - 1) - 12n

= n(n - 1)(n + 1) - 12n

n(n - 1)(n + 1) chia hết cho 6 (tích của 3 số nguyên liên tiếp)

- 12n chia hết cho 6

Vậy n3 - 13n chia hết cho 6 (đpcm)

Bình luận (0)
KD
15 tháng 9 2016 lúc 10:47

n^3 - 13n = n^3 - n -12n= n(n^2-1) - 6.2n= n(n-1)(n+1) - 6.2n 
Ta có n(n-1)(n=1) là tích 3 số nguyên ( hoặc tự nhiên j cug dc) nên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau.

Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n^3-13n= n(n-1)(n=1) -6.2n chia hết cho 6

Bình luận (0)
HC
15 tháng 9 2016 lúc 14:37

\(n^3-13n\\ =n^3-n-12n\\ =\left(n^3-n\right)-12n\\ =n\left(n^2-1\right)-12n⋮6\)

Bình luận (0)
CM
Xem chi tiết
CM
Xem chi tiết
BN
21 tháng 1 2016 lúc 23:08

vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8

mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6

vậy 8(m-1)m(m+1) chia hết cho 48

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 10 2021 lúc 17:20

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3

Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

Bình luận (0)