Những câu hỏi liên quan
PA
Xem chi tiết
NT
10 tháng 8 2023 lúc 8:26

\(A=3+3^2+3^3+...+3^{60}\)

\(A=3\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)

\(A=3.40+...+3^{57}.40\)

\(A=40\left(3+3^5...+3^{57}\right)\)

mà \(40⋮5\)

\(\Rightarrow A⋮5\left(dpcm\right)\)

Bình luận (0)
PA
10 tháng 8 2023 lúc 8:26

thank bạn nha 

 

 

 

 

 

 

 

Bình luận (0)
GD

\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3+3^4\right)=\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\\ =3.40+3^5.40+...+3^{57}.40\\ =\left(3+3^5+...+3^{57}\right).40⋮5\left(Vì:40⋮5\right)\)

Bình luận (0)
NT
Xem chi tiết
NM
23 tháng 11 2021 lúc 21:57

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)

Bình luận (0)
AB
Xem chi tiết
MH
24 tháng 9 2021 lúc 15:58

a) B\(=\) 3 + 32 + 3+ ... + 360 

\(=\)(3+32)+(33+34)+...+(359+360)

\(=\)3(1+3)+33(1+3)+...+359(1+3)

\(=\)(3+1)(3+33+...+359)

\(=\)4(3+33+...+359)⋮4

⇒B⋮4

b) B\(=\)(3+32+33)+...+(358+359+360)

\(=\)30(3+32+33)+...+357(358+359+360)

\(=\)3+32+33(30+33+36+...+357)

\(=\)39(30+33+36+...+357)⋮13

⇒ B⋮13

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NH
17 tháng 7 2023 lúc 22:23

A = 3 + 32 ....+ 330

A = (3 + 32 + 33) + (34 + 35 + 36) +...+ (328 + 329 + 330)

A = 3.( 1 + 3 + 32) + 34.( 1 + 3 + 32) +...+ 328.(1 + 3 + 32)

A = (1+3+32).( 3 + 34 + ...+ 328)

A = 13.(3 +34 +...+ 328)

13 ⋮ 13 ⇒ A = 13.(3 + 34+...+328) ⋮ 13 (đpcm)

Bình luận (0)
H24
17 tháng 7 2023 lúc 21:50

Làm  ơn  mình đang gấp

 

Bình luận (0)
TM
17 tháng 7 2023 lúc 21:59

\(A=3^1+3^2+3^3+...+3^{30}\\ \Leftrightarrow3A=3^2+3^3+3^4+...+3^{31}\\ \Leftrightarrow A-3A=3^1+3^2+3^3+...+3^{30}-3^2-3^3-3^4-...-3^{31}\\ \Leftrightarrow-2A=3-3^{31}\\ \Leftrightarrow A=\dfrac{\left(3^{31}-3\right)}{2}\)

Vì \(3^4\)có tận cùng là 1 nên \(3^{31}\)có thể viết dưới dạng \(\left(3^4\right)^7\cdot3^3\).
=> \(3^{31}\)có tận cùng là 7.

=> A có tận cùng là 1.
Mình chỉ giải được đến đây thôi. Hi vọng câu trả lời này có thể giúp bạn một chút.
Học tốt.

Bình luận (0)
ND
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NT
21 tháng 10 2023 lúc 21:50

a: \(G=8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

\(E=1+3+3^2+3^3+...+3^{1991}\)

\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)

\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)

Bình luận (0)
VQ
Xem chi tiết