Những câu hỏi liên quan
TH
Xem chi tiết
TV
Xem chi tiết
NP
10 tháng 12 2017 lúc 22:10

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 12 2021 lúc 19:17

\(\Leftrightarrow-4x^2+12x-16+\left(a-12\right)x+b+16⋮x^2-3x+4\)

=>a=12 và b=-16

Bình luận (0)
DL
Xem chi tiết
NT
9 tháng 11 2021 lúc 21:11

3: \(\Leftrightarrow a-15=0\)

hay a=15

Bình luận (0)
DV
Xem chi tiết
AN
17 tháng 8 2016 lúc 15:49

Ta có x^4-3x^3+3x^2+ax+b= (x-3x + 4)( x- 1) + (ax - 3x) + (b - 4)

Để đây là phép chia hết thì (ax - 3x) = 0 và (b - 4) = 0

Hay a=3 và b =4

Bình luận (0)
NA
Xem chi tiết
NA
15 tháng 4 2021 lúc 21:57

Giúp mik với ạ😿

Mai mik đi học rồi

 

Bình luận (0)
TT
15 tháng 4 2021 lúc 22:19

undefined

Bình luận (0)
NE
Xem chi tiết
NT
4 tháng 2 2023 lúc 10:09

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1

Bình luận (0)
NC
Xem chi tiết
H24
Xem chi tiết
NM
24 tháng 12 2015 lúc 18:23

 

\(x^4+x^3+3x^2+ax+4=\left(x^2-x+b\right)\left(x^2+cx+\frac{4}{b}\right)\)

                                                         \(=x^4+\left(c-1\right)x^3+\left(\frac{4}{b}+b-c\right)x^2+\left(bc-\frac{4}{b}\right)x+4\)

=> c -1 = 1 => c =2 

=> 4/b +b  -2  =3 => b2 -5b +4 =0 => b =1 hoặc b =4 

+ Nếu b =1 => a = bc - 4/b =1.2 - 4/1 = -2 

+ Nếu b =4 => a =............ = 4.2 - 4/4 = 7

Vậy a = -2 khi b =1

      a = 7 khi b =4

Bình luận (0)