Chứng minh rằng các tổng và hiệu sau chia hết cho 10
a)192017 + 312017
b)72015 + 72017
1-Cho 1 số tự nhiên a và 5a có tổng các chữ số như nhau.chứng minh rằng a chia hết cho 9
2- cho a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7. Điều ngược lại có đúng hay không?
3-chứng minh rằng ( 1005a+ 2100b) chia hết cho 15 với mọi a,b thuộc N
2-
Ta có:
a+5b chia hết cho 7
=>10.(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7
=>49b chia hết cho 7 (đúng)
Vì vậy 10a+b chia hết cho 7
CM điều ngược lại đúng
Ta có:
10a+b chia hết cho 7
=>5.(10a+b) chia hết cho 7
=>50a+5b chia hết cho 7
Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7
=>49a chia hết cho 7 (đúng)
Vậy điều ngược lại đúng
Vì a và 5a có tổng các chữ số như nhau
=> a và 5a có cùng số dư khi chia cho 9
=> 5a - a chia hết cho 9
=> 4a chia hết cho 9
Mà ƯCLN(4,9) = 1
=> a chia hết cho 9 (đpcm)
Bài 1:
a) Biết 3a+2b chia hết cho 17 ( a,b Thuộc N )
Chứng minh rằng 10a + b chia hết cho 17
b) Biết ( a - 5b) chia hết cho 17 ( a,b Thuộc N )
Chứng minh rằng ( 10a + b ) chia hết cho 17
Bài 2: Tìm BC và BCNN của các số sau :
a) 45;50;100
b) 30;90;60
c) Tìm BC >5000 và <10000 của 126;140;180
Chứng minh rằng tổng các chữ số ở hàng lẻ và tổng các chữ số ở hàng chẵn có hiệu chia hết cho 11 thì số đó chia hết cho 11?
Quy tắc đoán một số tự nhiên chia hết cho 11 là hiệu của tổng các số ở vị trí số lẻ và tổng các số ở vị trí số chẵn của nó có thể chia hết cho 11.
Công thức tổng quát _____
A = a b c d chia hết cho 11 khi [(a + c) – (b + d) ] chia hết 11
Ví dụ tổng các số ở vị trí số lẻ là 9 + 8 + 6 = 23, tổng các số ở vị trí số chẵn là 2 + 8 + 2 = 12, hiệu của hai tổng này bằng 11, có thể chia hết cho 11 cho nên số 268829 có thể chia hết cho 11.
Ví dụ khác: 1257643, vì (3 + 6 + 5 + 1) – (2 + 7 + 4) = 2 cho nên số 1257643 không thể chia hết cho 11.
Cách chứng minh vẫn giống với quy tắc trong 3 và 4: dùng ký hiệu trong (3).
A = = [(10 + 1) a1 + (102 -1)a2 + (103 + 1)a3 + (104 – 1)a4 +..] + (a0 + a2 +..) - (a1 + a3 +...)
Số trong hoặc đơn phía trước là bội số của 11, do vậy muốn phán đoán xem a có phải là bội số của 11 không thì chỉ cần xem số trong hoặc đơn phía sau có phải là bội số của 11 hay không.
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
51a:17
=> 51a-a+5b:17
=> 50a+5b:17
=> 5(10a+b):17
=> 10a+b:17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
Chứng minh rằng: 10a + 2b chia hết cho 19 khi và chỉ khi 18a + 5b chia hết cho 19
bạn nhân 2 về rồi xem vế nào lớn hơn rùi trừ đi
nhân 10a+2b với 1 số và 18a+5b với 1 số sao cho khi trừ 2 số cho nhau xuất hiên 1 số có 19a hoặc 19b thì luôn chia hết cho 19
Chứng minh rằng: 10a + 2b chia hết cho 19 khi và chỉ khi 18a + 5b chia hết cho 19
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
b) Giải
Ta có:
a + 4b ⋮ 13 ⇒10(a + 4b) ⋮ 13 ⇒10a + 40b ⋮ 13
VÌ 39 ⋮ 13 ⇒39b ⋮ 13
⇒10a + (40b - 39b) ⋮ 13
⇒10a + b ⋮ 13
Vậy 10a + b ⋮ 13
Chứng minh rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9
=> Nếu số đó chia 9 dư k
=> Tổng các chữ số chia 9 dư k
Vậy hiệu của chúng có số dư khi chia cho 9 là: k - k = 0
Vậy chia hết cho 9