số nguyên dương n lớn nhất thỏa mãn : n^200<5^300
số nguyên dương n lớn nhất thỏa mãn n^200 <5^300
n^200<5^300
=>(n^2)^100<(5^3)^100
=>n^2<5^3
=>n^2<125
=>n^2 E {0;1;4;9;...;121}
mà n lớn nhất
=>n^2=121=>n=11
vậy n=11
Số nguyên dương n lớn nhất thỏa mãn : n^200<5^300
Số nguyên dương n lớn nhất thỏa mãn n^200<5^300
n^200<5^300=>(n^2)^100<(5^3)^100
=>n^2<5^3=125
=>n^2 thuộc {0;4;9;...;121}
mà n lớn nhất=>n^2=121=>n=+11
mà n nguyên dương =>n=11
tick nhé
Số nguyên dương n lớn nhất thỏa mãn: n200<5300=...............
Số nguyên dương n lớn nhất thỏa mãn:
\(n^{200}< 5^{300}\)
Ta có : \(n^{200}=\left(n^2\right)^{100};5^{300}=\left(5^3\right)^{100}=125^{100}\)
Để: \(n^{200}< 5^{300}\Rightarrow\left(n^2\right)^{100}< 125^{100}\Leftrightarrow n^2< 125\)\(\Leftrightarrow n=11\)
\(n^{200}< 5^{300}\) => \(\left(n^2\right)^{100}< 125^{100}\) => \(n^2< 125\) <=> \(11^2< 125\) => \(n=11\)
số nguyên dương n lớn nhất thỏa mãn
n200<5300
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(n^{200}=\left(n^2\right)^{100}\)
n=12
Tìm số nguyên dương n lớn nhất thỏa mãn:
\(n^{200}<5^{300}\)
Ta có: \(n^{200}<5^{300}\)=> \(n^{2\cdot100}<5^{3\cdot100}=>\left(n^2\right)^{100}<\left(5^3\right)^{100}\Leftrightarrow n^2<5^3\Leftrightarrow n^2<125\)\(\Rightarrow n^2\in\left\{0;1;4;9;16;25;36;49;64;81;100;121\right\}\)
mà n >0
\(=>n\in\left\{1;2;3;4;5;6;7;8;9;10;11\right\}\)
mà n là số nguyên dương lớn nhất
=> n = 11
Vậy n =11
Số nguyên dương n lớn nhất thỏa mãn \(n^{200}\)<\(5^{300}\)
N^200<5^300
=>(n^2)^100<(5^3)^100
=>n^2<5^3=125
=>n^2={0;4;9;...;121}
Ma n lon nhat=>n=11
Tick đi
Cho dãy số u n thỏa mãn log 3 2 u 5 - 63 = 2 log 4 u n - 8 n + 8 , ∀ n ∈ N * . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số nguyên dương lớn nhất n thỏa mãn u n . S 2 n u 2 n . S n < 148 75
A. 18
B. 17
C. 16
D. 19