Những câu hỏi liên quan
NH
Xem chi tiết
PK
Xem chi tiết
MT
17 tháng 7 2016 lúc 8:21

cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại

bạn làm theo cách một chúng ta dc:

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng  đúng v~

Khi 2x+3y-1=0 thì nó thành cách 2 đấy

Bình luận (0)
PK
17 tháng 7 2016 lúc 8:26

Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.

v~ thiệt

Bình luận (0)
PA
17 tháng 7 2016 lúc 8:44

cách 2 dễ hiểu hơn đó :)

Bình luận (0)
Xem chi tiết
PK

bây giờ mới thấy bài này nhảm v~

Bình luận (0)
PN
17 tháng 7 2016 lúc 11:22

hjjj

e nek

Bình luận (0)
HD
Xem chi tiết
TH
Xem chi tiết
SN
1 tháng 11 2017 lúc 21:02

Ta có : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Nên : \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

<=> 6x = 12

=> x = 2 . 

Bình luận (0)
TD
1 tháng 11 2017 lúc 21:08

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Bình luận (0)
HT
Xem chi tiết
AK
18 tháng 7 2018 lúc 10:19

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

TH 1 : \(2x+3y-1=0\)

\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)

\(\Rightarrow2x+1=0;3y-2=0\)

\(\Rightarrow2x=-1;3y=2\)

\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)

TH 2 : \(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow1=\frac{3y-2}{7}\)

\(\Rightarrow3y-2=7\)

\(\Rightarrow3y=9\)

\(\Rightarrow y=3\)

Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)

Bình luận (0)
PD
18 tháng 7 2018 lúc 10:17

Theo t/c dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\Leftrightarrow x=2\)

Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(1=\frac{3y-2}{7}\)

\(\Rightarrow3y=9\Leftrightarrow y=3\)

Bình luận (0)
IY
18 tháng 7 2018 lúc 10:14

ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=> 6x = 12

x = 2

=>  \(\frac{2x+1}{5}=\frac{2.2+1}{5}=\frac{5}{5}=1\)

\(\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)

KL: x = 2; y = 3

Bình luận (0)
TH
Xem chi tiết
PL
17 tháng 10 2016 lúc 18:17

                                               Bài giải

1  Vì : \(b=\frac{a+c}{2}\)     

=> 2b = a+c                        (1)

\(Vì\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)=>\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)=\frac{b+d}{2bd}\)  

=> 2bd = c .(b+d)                          (2)

Vì :  2b = a + c

=> 2bd = b .( a +c )

       c.(b+d) = d.(a + c )

\(=>\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

=>    \(\frac{c}{d}=\frac{a}{b}\)

Vậy a , b , c , d có thể lập thành một tỉ lệ thức ( đpcm )

2.     Áp dụng t/c của dãy tí số bằng nhau , ta có :

         \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>  12=6x

=> x= 12 : 6

=> x = 2

Thay số vào ta có : \(\frac{2.2+1}{5}=\frac{3y-2}{7}=\frac{5}{5}=1\)

   => 3y - 2 = 7 . 1 = 7

  => 3y = 7 + 2 = 9

  => y                = 3

Vậy  : x = 2

          y = 3

Bình luận (0)
PD
17 tháng 10 2016 lúc 18:00

Ta có:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)(T/C)

\(\Rightarrow6x=12\)

\(\Rightarrow\)x=2

Thay x=2 vào đề ta có:

\(\frac{2\cdot2+1}{5}\)=\(\frac{3y-2}{7}\)=1

\(\Rightarrow3y-2=7\)

3y=9

y=3

Vậy x=2;y=3

 

Bình luận (0)
PL
17 tháng 10 2016 lúc 18:01

quá dễ ! coi nè @Thái Minh Hà

Bình luận (3)
KW
Xem chi tiết
NG
21 tháng 12 2016 lúc 20:40

x=2

y=3

Bình luận (0)
QD
20 tháng 2 2017 lúc 17:27

Áp dụng TC DCTSBN ta có :

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

Thay x = 2 và 2 TLT đầu ta được :

\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Leftrightarrow\frac{3y-2}{7}=1\)

\(\Rightarrow3y-2=7\Rightarrow y=3\)

Vậy x = 2 và y = 3

Bình luận (0)
C2
Xem chi tiết
TP
12 tháng 1 2020 lúc 17:42

Ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\) \(\left(x\ne0\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)\(=\frac{\left(2x+1\right)+\left(3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}\)\(=\frac{0}{12-6x}=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\3y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{2}{3}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa