Phân tích các đa thức sau thành nhân tử :
a) 7x + 7y + x^2 - y^2
b) x^2(y-z) + y^2(z-x) + z^2(x-y)
1.Đa thức 4x(2y-z) +7y(2y-z) được phân tích thành nhân tử là :
A .(2y+z)(4x+7y)
B.(2y-z)(4x-7y)
C.(2y+z)(4x-7y)
D. (2y-z)(4x+7y)
2 Phân tích đa thức x2+3x+xy+3y thành nhân tử ta được :
A. (x+3)(y+3)
B. (x-y)(x+3)
C. (x+3)(x+y)
D. Cả 3 đều sai
Phân tích các đa thức sau thành nhân tử (bằng phương pháp đặt nhân tử chung)
a) 4x(2y - z) + 7y(z - 2y)
b) 2x(x + 3) + (3 + x)
c) 3x(2x - 1) + 7x2(1 = 2x)
d) y(x - z) + 7(z - x)
a) Ta có: \(4x\left(2y-z\right)+7y\left(z-2y\right)\)
\(=4x\left(2y-z\right)-7y\left(2y-z\right)\)
\(=\left(4x-7y\right)\left(2y-z\right)\)
b) Ta có: \(2x\left(x+3\right)+\left(3+x\right)\)
\(=\left(2x+1\right)\left(x+3\right)\)
c) Ta có: \(3x\left(2x-1\right)+7x^2\left(1-2x\right)\)
\(=3x\left(2x-1\right)-7x^2\left(2x-1\right)\)
\(=\left(3x-7x^2\right)\left(2x-1\right)\)
Đa thức (4 x 2 y - z )+ (7 y z - 2y )được phân tích thành nhân tử là
A(2y+z)(4x+7y)
B(2y + z) (4 x - 7 y)
C2y - z)( 4 x - 7 y)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ a, 5x-20y b, x^2+x^2y+x^2y^2 c, x(x+y)-(5x+5y) d, 5(x-y)-y(y-x) e, x(y-1)+y(1-y) f,4x(2y-z)+7y(z-2y) g, y(x-z)+7(z-x) h, 27x^2(y-1)-9x^3(1-y) LƯU Ý: trình bày đầy đủ các bước làm
a: \(5x-20y=5\left(x-4y\right)\)
b: \(x^2+x^2y+x^2y^2=x^2\left(1+y+y^2\right)\)
c: \(x\left(x+y\right)-\left(5x+5y\right)=\left(x+y\right)\left(x-5\right)\)
d: \(5\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(y+5\right)\)
Phân tích các đa thức sau thành nhân tử
a) (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+zx)^2
b) 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4
a,Từ giả thiết ta có
(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2
Đặt x2+y2+z2=a
xy+yz+zx=b
=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2
=a(a+2b)+b2
=a2+2ab+b2
=(a+b)2
=(x2+y2+z2+xy+yz+zx)2
câu b hơi dài mình gửi sau nhé
Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4
Gọi x^4+y^4+z^4=a
x^2+y^2+z^2=b
x+y+z=c
=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4
=2a-2b^2+b^2-2bc^2+c^4
=2(a-b^2)+(b+c^2)^2
Ta có
2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]
=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]
=2.(-2)(x2y2+y2z2+z2x2)
=-4(x2y2+y2z2+z2x2)
Lại có
(b+c^2)^2
=[(x^2+y^2+z^2)+(x+y+z)2]2
=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2
=4(xy+yz+zx)2
=>2(a-b^2)+(b+c^2)^2
=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2
=8xyz(x+y+z)
cauu a cua bn Đen đủi .....lm sai r
phân tích đa thức sau thành nhân tử x^2 y^2(y-x)+y^2 z^2(z-y)-z^2 x^2(z-x)
x2(y - z) + y2(z - x) + z2(x - y)
= z2(x - y) + x2 y - x2 z + y2 z - y2 x
= z2(x - y) + (x2 y - y2 x) + (- x2 z + y2 z)
= (x - y)(z2 + xy - zx - zy)
= (x - y)[(z2 - zx) + (xy - zy)]
= (x - y)(z - x)(z -y)
Phân tích các đa thức sau thành nhân tử:
a) x 2 ( x - 3 ) 2 - ( x - 3 ) 2 - x 2 +1;
b) x 3 - 2 x 2 + 4x - 8;
c) ( x + y ) 3 - ( x - y ) 3 ;
d) 2 a 2 (x + y + z) - 4ab (x + y + z) + 2 b 2 (x + y + z).
a) (x - 1)(x + l)(x - 2)(x - 4). b) (x - 2)( x 2 + 4).
c) 2y(3 x 2 + y 2 ). d) 2(x + y + z) ( a - b ) 2 .
a. \(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)
\(=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left[\left(x-3\right)^2-1\right]\left(x^2-1\right)\)
\(=\left(x-3+1\right)\left(x-3-1\right)\left(x+1\right)\left(x-1\right)\)
\(=\left(x-2\right)\left(x-4\right)\left(x+1\right)\left(x-1\right)\)
b. \(x^3-2x^2+4x-8\)
\(=\left(x^3+4x\right)-\left(2x^2+8\right)\)
\(=x\left(x^2+4\right)-2\left(x^2+4\right)\)
\(=\left(x-2\right)\left(x^2+4\right)\)
c. \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3\)
\(=2y\left(3x^2+y^2\right)\)
d. \(2a^2\left(x+y+z\right)-4ab\left(x+y+z\right)+2b^2\left(x+y+z\right)\)
\(=\left(2a^2-4ab+2b^2\right)\left(x+y+z\right)\)
\(=2\left(a^2-2ab+b^2\right)\left(x+y+z\right)\)
\(=2\left(a-b\right)^2\left(x+y+z\right)\)
phân tích đa thức sau thành nhân tử x^2 y^2 ( y-x) + y^2z^2 (z-y)- x^2 z^2 ( z-x)
\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left[\left(z-y\right)+\left(y-x\right)\right]\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-y\right)-x^2z^2\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2y^2-x^2z^2\right)+\left(z-y\right)\left(y^2z^2-x^2z^2\right)\)
\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(y+x\right)\)
\(=\left(y-x\right)\left(z-y\right)\left(-x^2y-x^2z+z^2y+z^2x\right)\)
\(=\left(y-x\right)\left(z-y\right)\left[xz\left(z-x\right)+y\left(z-x\right)\left(z+x\right)\right]\)
\(=\left(y-x\right)\left(z-y\right)\left(z-x\right)\left(xy+yz+xz\right)\)
phân tích đa thức sau thành nhân tử : B=2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4 toán 8
Phân tích các đa thức sau thành nhân tử:
a) x(y2-z2)+y(z2-x2)+z(x2-y2)
b) x(y+z)2+y(z+x)2+z(x+y)2-4xyz
b)x(y+z)2+y(z+x)2+z(x+y)2-4xyz
=[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2
=x(y2+2yz+z2-2yz)+y(x2+z2+2xz-2xz)+z(x+y)2
=x(y2+z2)+y(x2+z2)+z(x+y)2
=xy2+xz2+x2y+yz2+(xz+yz)(x+y)
=xy(x+y)+z2(x+y)+(xz+yz)(x+y)
=(x+y)(xy+z2+xz+yz)
=(x+y)[x(y+z)+z(y+z)]
=(x+y)(y+z)(x+z)
a)x(y2-z2)+y(z2-x2)+z(x2-y2)
=x(y-z)(y+z)+yz2-x2y+x2z-y2z
=(y-z)(xy+xz)-x2(y-z)-yz(y-z)
=(y-z)(xy+xz-x2-yz)
=(y-z)[x(y-x)-z(y-x)]
=(y-z)(y-x)(x-z)