Những câu hỏi liên quan
H24
Xem chi tiết
TD
25 tháng 1 2019 lúc 21:37

1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab

Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac

Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)

\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)

2. tương tự

3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng

Bình luận (0)
DH
Xem chi tiết
BH
Xem chi tiết
H24
Xem chi tiết
NC
15 tháng 10 2020 lúc 12:28

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

Nếu a + b + c = 0 => a = b = c = 0 

Nếu a + b + c khác 0

Áp dụng dãy tỉ số bằng nhau 

\(\frac{a}{b+c-5}=\frac{b}{a+c+3}=\frac{c}{a+b+2}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)

=> \(\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\Rightarrow a+b+c=1\)

=> \(\hept{\begin{cases}b+c=1-a\\b+a=1-c\\a+c=1-b\end{cases}}\)

Khi đó ta có: \(\frac{a}{1-a-5}=\frac{b}{1-b+3}=\frac{c}{1-c+2}=\frac{1}{2}\)

=> \(\frac{a}{-a-4}=\frac{b}{-b+4}=\frac{c}{-c+3}=\frac{1}{2}\)

=> a = -4/3; b = 4/3; c = 1

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
HU
Xem chi tiết
TL
28 tháng 9 2016 lúc 12:13

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c=1\)

\(A=\frac{a^{1000}\cdot b^{1007}}{c^{2007}}=\frac{1\cdot1}{1}=1\)

Bình luận (0)
VA
Xem chi tiết
LN
Xem chi tiết
NA
13 tháng 7 2018 lúc 23:10

bạn dùng TC dãy tỉ số bằng nhau đi

cộng vào là ra kết quả ngay mà

Bình luận (0)
MH
Xem chi tiết
N2
Xem chi tiết
NB
11 tháng 10 2015 lúc 20:57

cái này chắc k ai làm đâu. mệt lắm

Bình luận (0)