Những câu hỏi liên quan
KG
Xem chi tiết
XO
29 tháng 8 2023 lúc 20:22

Đặt x = -2y + k (k \(\inℤ\))

Ta có x2 + 8y2 + 4xy - 2x - 4y = 4

<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4

<=> k2 + 4y2 - 2k = 4

<=> (k - 1)2 + (2y)2 = 5 (*) 

Dễ thấy (2y)2 \(⋮4\) (**)

Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được 

\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\) 

Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1) 

mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)  

Bình luận (0)
BB
Xem chi tiết
TT
10 tháng 1 2021 lúc 15:03

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

Bình luận (1)
DT
Xem chi tiết
BL
Xem chi tiết
LD
15 tháng 8 2018 lúc 12:34

jupo voi

Bình luận (0)
DT
Xem chi tiết
NK
18 tháng 8 2019 lúc 9:05

Anh/ chị viết rõ đề bằng công thức toán được không ạ?

Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?

\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?

Bình luận (0)
GL
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
LC
9 tháng 5 2021 lúc 8:59

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{3}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4xy}\)

Ta có BĐT phụ: \(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng )

Dấu "=" xảy ra <=> x=y

\(\Rightarrow P\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1}+2+\frac{5}{1}=11\)

Dấu"=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P =11 \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa