MN

1) Tìm các số nguyên x,y thỏa mãn :

       \(x^2+8y^2+4xy-2x-4y=4\)

Giải giúp cháu với ạ :33

MN
12 tháng 10 2019 lúc 22:05

Thầy mới chữa ạ :33

x2 + 8y2 + 4xy - 2x - 4y = 4

x2 + 4y2 + 1 + 4xy - 2x - 4y = 5 - 4y2

( x + 2y - 1 )2 + 4y2 = 5

Vì \(4y^2\ge0\)    \(4y^2\in Z\)

    \(4y^2⋮4\)       

TH1 : 4y2 = 0

=> y = 0

=> ( x + 2y - 1)2 = 5

Mà x là số nguyên

      5 không phải là số chính phương

=> Loại

TH2 : 4y2 > 0

Mà y thuộc Z

=> 4y2 = 4

=> y thuộc { -1;1 }

Với y = 1 => ( x + 1 )2 = 1 => x thuộc { 0;-2 }

Với y = -1 => ( x - 2)2 = 1 => x  thuộc { 2;4 }

Vậy \(\left(x;y\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(2;-1\right);\left(4;-1\right)\right\}\)

     

Bình luận (0)
NA
12 tháng 10 2019 lúc 13:07

\(\Leftrightarrow2\left(x^2+2xy+y^2\right)-\left(x^2+2x+1\right)+6\left(y^2-\frac{2}{3}y+\frac{1}{9}\right)-\frac{11}{3}=0\)

đến đây ,Áp dụng HĐT vào 2 cái đầu rồi giải nốt nha!^_^

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
BL
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
HL
Xem chi tiết
KJ
Xem chi tiết
H24
Xem chi tiết