A/b=b/c=c/d=d/a a+b+c+d không = 0
CM a20b11c2011=d2042
cho a,b,c>0cm a+c/(a+b(c+d)+b+d/(a+d)(b+c)>=4/a+b+c+d
Cho a;b;c;d khác 0. Thỏa mãn a/b+c+d = b/a+d+c = c/a+b+d = d/a+b+c.CMR M=a+b/c+d + b+c/a+d + c+d/a+b + d+a/b+c không phải là số chính phương
Mn giúp mình với. Cho a phần b = c phần d và a, b, c, d không = 0, a không = b, c không = d. Chứng minh rằng a - b phần b = c - d phần d
cho a,b,c khác 0 và không đối nhau từng đôi một thỏa mãn: 2021a+b+c+d/a=a+2021b+c+d/b=a+b+c2021+d/c=a+b+c+2021d/d
tính giá trị biểu thức M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
cho a,b,c khác 0 và không đối nhau từng đôi một thỏa mãn: 2021a+b+c+d/a=a+2021b+c+d/b=a+b+c2021+d/c=a+b+c+2021d/d
tính giá trị biểu thức M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
Cho A=(2a+b+c)/(a+b+c)+(2b+c+d)/(b+c+d)+(2c+d+a)/(c+d+a)+(2d+a+b)/d+a+b với a,b,c,d thuộc N.Chứng mình A không là số nguyên
Cho A=a+b/a+b+c + b+c/b+c+d + c+d/c+d+a + d+a/d+a+b ( với a;b;c;d là các số nguyên dương ) . Chứng tỏ biểu thức A không là số nguyên
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
cho a,b,c,d là các số không bằng nhau và (a+b+c+d).(a-b-c+d)=(a-b+c-d)(a+b-c-d) chứng minh rằng a:c=b:d
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\left(a+d\right)^2-\left(a-d\right)^2=\left(b+c\right)^2-\left(b-c\right)^2\)
\(\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(2d\times2a=2b\times2c\)
\(ad=bc\)
\(\frac{a}{c}=\frac{b}{d}\left(\text{đ}pcm\right)\)
Cho a,b,c,d thuộc tập hợp N*
Chứng tỏ rằng"
M= [a/(a+b+c)] + [b/(a+b+d)] + [c/(b+c+d)] + [d/(a+c+d)] có giá trị không là số nguyên
cho a,b,c,d thuộc N*
CTR M=a:(a+b+c)+b:(a+b+d)+c:(b+c+d)+d:(a+c+d) có giá trị không là số nguyên
Ta có a, b, c, d thuộc N*
\(\Leftrightarrow\)\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d}
\)
\(\frac{d}{a+c+d}>\frac{d}{a+b+c+d}\)
Cộng vế theo vế, ta có: M>\(\frac{a+b+c+d}{a+b+c+d}\)=1
Vì a, b, c, d thuộcc N* \(\Rightarrow\) \(\frac{a}{a+b+c}< 1
\)\(\Rightarrow\) \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự, ta có: \(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d},\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d},\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}\)
Tiếp nha bạn:
Công vế theo vế ta có:
M<\(\frac{a+d+b+c+c+a+d+b}{a+b+c+d}
\Rightarrow M< \frac{2a+2b+2c+2d}{a+b+c+d}\)\(\Rightarrow M< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
\(\Rightarrow\) M<2 (2)
Từ (1) và (2) \(\Rightarrow\) 1<M<2
\(\Rightarrow\) M không có giá trị là số nguyên