Những câu hỏi liên quan
NM
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
H24
30 tháng 11 2017 lúc 14:16

Kẻ phân giác AD, BK vuông góc với AD.

\(\sin\frac{\widehat{A}}{2}=\sin BAD\)

Xét tam giác AKB vuông tại K, ta có:

\(\sin BAD=\frac{BK}{AK}\left(1\right)\)

Xét tam giác BKD vuông tại K, ta có: 

\(BK\Leftarrow BD\)thay vào (1)

\(\sin BAD\Leftarrow\frac{BD}{AB}\left(2\right)\)

Lại có: \(\frac{BD}{CD}=\frac{AB}{AC}\)

\(\Rightarrow\frac{BD}{\left(BD+CD\right)}=\frac{AB}{\left(AB+AC\right)}\)

\(\Rightarrow\frac{BD}{BC}=\frac{AB}{\left(AB+AC\right)}\)

\(\Rightarrow BD=\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\)thay vào (2)

\(\sin BAD\Leftarrow\frac{\left[\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\right]}{AB}\)

\(=\frac{BC}{\left(AB+AC\right)}\left(ĐPCM\right)\)

Bình luận (0)
TH
Xem chi tiết
CH
Xem chi tiết
AN
25 tháng 9 2017 lúc 11:28

Kẽ phân giác AD của tam giác ABC, \(AD=l\)

Ta có:

\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)

Ta lại có:

\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)

\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)

Bình luận (0)
PH
25 tháng 9 2017 lúc 12:04

bài bạn alibaba kiểu zì zì tam giác ban đầu đã vuông đâu

Bình luận (0)
CM
26 tháng 9 2017 lúc 21:11

là 15 đó

Bình luận (0)
GT
Xem chi tiết
H24
23 tháng 11 2020 lúc 19:27

câu này có nhiều r 

bạn chỉ cần kẻ 1 đường vuông góc là ra

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
H24
31 tháng 7 2016 lúc 9:38

Hỏi đáp Toán

Bình luận (1)
CK
Xem chi tiết
TH
31 tháng 7 2016 lúc 10:35

Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)

cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)

3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)

từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)

Bình luận (0)
H24
31 tháng 7 2016 lúc 9:54

\(\cot B+\cot C=\frac{BD}{AD}+\frac{CD}{AD}=\frac{BC}{AD}=\frac{BC}{3GH}\ge\frac{2GH}{3GH}=\frac{2}{3}\)
VỚI D LÀ CHÂN ĐƯỜNG CAO HẠ TỪ A XUÔNG BC , G LÀ TRỌNG TÂM , H LÀ CHÂN ĐƯỜNG CAO HẠ TỪ G XUỐNG BC
B2 THÌ GIẢI BÌNH THƯỜNG =='. ĐỌC THÊM NCPT 9 NHÉ 

Bình luận (0)