3, so sánh A và B
biết A=2018^2-2016^2
B=2019^2-2017^2
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
So sánh
P= 2016/2017+2017/2018+2018/2019 và
Q= 2+2016+2017+2018/2017+2018+2019
Ghi đầy đủ các bước hộ mk nha
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
So sánh A=2018^2-2017^2 và B=2017^2-2016^2
So sánh C=2018^2+2016^2 và D=2.2017^2
a: Ta có: \(A=2018^2-2017^2=2018+2017\)
\(B=2017^2-2016^2=2017+2016\)
mà 2018>2016
nên A>B
So sánh A=2018^2019+1/2018^2019-2017 với B=2018^2019+2/2018^2019-2016
Giúp tớ giải vs tớ đag cần gấp❤❤❤❤
so sánh A và B biết
\(A=2018^2-2016^2\)
\(B=2019^2-2017^2\)
\(A=\left(2018-2016\right)\left(2018+2016\right)=2.4034\)
\(B=\left(2019-2017\right)\left(2019+2017\right)=2.4036\)
Ta thấy 4034 < 4036 nên A < B.
\(A=2018^2-2016^2=\left(2018+2016\right)\left(2018-2016\right)=4034.2\)
\(B=2019^2-2017^2=\left(2019+2017\right)\left(2019-2017\right)=4036.2\)
Vì 4036 > 4034 nên 4036 . 2 > 4034 . 2 nên B > A
Áp dụng công thức: \(a^2-b^2=\left(a+b\right).\left(a-b\right)\)
Ta có:
\(A=2018^2-2016^2=\left(2018+2016\right).\left(2018-2016\right)=4034.2=8068\)
\(B=2019^2-2017^2=\left(2019+2017\right).\left(2019-2017\right)=4036.2=8072\)
so sánh A và B A=2016/2017-2017/2018+2018/2019-2019/2020 B=-1/2016-2017 - 1/2018-2019
So sánh : A=20182019+1/20182019-2017
B=20182019+2/20182019-2016
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017}{2018^{2019}-2017}+\frac{2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016}{2018^{2019}-2016}+\frac{2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)Ta có: \(2018^{2019}-2017< 2018^{2019}-2016\)
\(\Rightarrow\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow A>B\)
Vậy...
Ta có :
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)
\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)
Vì \(2018^{2019}-2017< 2018^{2019}-2016\)nên \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)hay \(A>B\)
~ Hok tốt ~
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]