Những câu hỏi liên quan
TT
Xem chi tiết
JT
26 tháng 4 2015 lúc 22:39

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

Bình luận (0)
TT
1 tháng 6 2015 lúc 15:35

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

Bình luận (0)
NC
29 tháng 11 2016 lúc 19:58

cách giả cảu cậu hay thật

Bình luận (0)
TT
Xem chi tiết
TT
17 tháng 12 2015 lúc 20:08

nói chứ toán của anh choa đăng cho vi hihi

Bình luận (0)
PA
Xem chi tiết
TL
11 tháng 12 2015 lúc 20:19

Ta có 0= (x + y + z)= x+ y2 + z+ 2(xy + yz + zx) = x+ y+ z+ 2.0 

=> x+ y+ z= 0 <=> z = y = z = 0 

=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0

Bình luận (0)
H24
11 tháng 12 2015 lúc 20:19

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0

Bình luận (0)
ND
24 tháng 3 2016 lúc 13:09

Ta có 0= (x + y + z)= x+ y2 + z+ 2(xy + yz + zx) = x+ y+ z+ 2.0 

=> x+ y+ z= 0 <=> z = y = z = 0 

=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0

Bình luận (0)
KO
Xem chi tiết
TT
1 tháng 6 2015 lúc 15:08

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

Bình luận (0)
TT
1 tháng 6 2015 lúc 15:09

copy trong câu hỏi tương tự à 

Bình luận (0)
H24
1 tháng 6 2015 lúc 15:10

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x22 + y2+ z2 + 2 (xy+yz+xz) = 0

suy ra x2 + y2 + z2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)1995 + 01996 + (z+1)1997 = (-1) + 0 + 1 = 0

Vậy S = 0

Bình luận (0)
TH
Xem chi tiết
PG
27 tháng 2 2021 lúc 8:01

bí à bạn

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
CH
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
TL
13 tháng 12 2016 lúc 18:40

CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

\(A=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

Bình luận (0)