Đại số lớp 8

TD

Cho 3 số x,y vả z thoả mãn 1/x+1/y+1/z=0. Hãy tính A= yz/x^2+zx/y^2+xy/z^2

TL
13 tháng 12 2016 lúc 18:40

CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

\(A=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

Bình luận (0)

Các câu hỏi tương tự
IM
Xem chi tiết
KR
Xem chi tiết
NH
Xem chi tiết
GH
Xem chi tiết
NL
Xem chi tiết
PK
Xem chi tiết
DA
Xem chi tiết
PL
Xem chi tiết
HP
Xem chi tiết