cho S=3 mũ 0+3 mũ 2+3 mũ 4+3 mũ 6+...+3 mũ 2002
a)Tính S
b)Chứng minh S chia hết cho 7
Cho S=3 mũ 0+3 mũ 2+3 mũ 4 +3 mũ 6 +.....+3 mũ 2020
a)Tính S
b)Chứng minh S chia hết cho 7
a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)
\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)
\(\Leftrightarrow9S-S=3^{2022}-1\)
\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)
b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)
\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)
=> đpcm
Tham khảo :
a, S=30+32+34+36+...+32020
⇔32S=32+34+36+38+...+32022
⇔32S−S=32022−30
⇔9S−S=32022−1
⇔8S=32022−1⇔S=32022−18
b,S=30+32+34+36+...+32020
=(30+32+34)+(36+38+310)+...+(32016+32018+32020)
=(1+32+34)+36(1+32+34)+...+32016(1+32+34)
=(1+32+34)(1+36+...+32016)
=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (
=> (đpcm)
=>99
1.Chứng minh rằng:
a)A= 27 mũ 27 +3 mũ 77 chia hết cho 82
2.Cho S= 3 mũ 2 +3 mũ 4+.....+3 mũ 998+ 3 mũ 1000
a) Tính S b) chứng minh rằng :S chia hết cho 7 dư 6
Cho S = 1+3+3 mũ 2 + 3 mũ 3+ 3 mũ 4+ 3 mũ 5+ 3 mũ 6+ 3 mũ 7+ 3 mũ 8+ 3 mũ 9.Chứng tỏ rằng S chia hết cho 4
b) chứng minh rằng hiệu abc - cba chia hết cho 11 (với a>c)
gải giúp mình với
cho s=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + 3 mũ 7+ 3 mũ 8 + 3 mũ 9.Chứng tỏ S chia hết cho 4
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36.(1 + 3) + 38.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)
cho s=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + 3 mũ 7+ 3 mũ 8 + 3 mũ 9.Chứng tỏ S chia hết cho 4
Chứng tỏ:
a)S=4+4 mũ 2+4 mũ 3+4 mũ 4+...+4 mũ 99+4 mũ 100 chia hết cho 5
b)S=2+2 mũ 2+2 mũ 3+2 mũ 4+...+2 mũ 2009+2 mũ 2010 chia hết cho 6
c)S=1+7+7 mũ 2+7 mũ 3+...+7 mũ 101 chia hết cho 8
d)S=4 mũ 39+4 mũ 40+4 mũ 41 chia hết cho 28
AI XONG TRC MÌNH TICK NHA~
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba
b)Cm B=10 mũ 100 cộng 17 chia hết cho 9
c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2
mong mọi người trả lời giúp mik cảm ơn các bạn
cho S = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 +... + 2 mũ 28 + 2 mũ 29 + 2 mũ 30 . Chứng minh rằng S chia hết cho 7
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
S=21+22+23+...+230
S=(21+22+23)+(24+25+26)+...+(228+229+230)
S=7.2+7.24+...+7.228
S=7.(2+24+...+228)
⇒S⋮7
Ta có: \(S=2^1+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{28}\right)⋮7\)
Cho: S=3 mũ 0+3 mũ 1+3 mũ 2+...+3 mũ 2002. Tìm S và Chứng minh S chia hết cho 7
Mình làm nhé ( đây là theo mình nghĩ chứ mình ko biết đúng hay sai )
a ) S = 30 + 31 + 32 + ........ + 32002
\(\Rightarrow3S=3+3^2+3^3+......+3^{2003}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+......+3^{2003}\right)-\left(1+3^1+3^2+.......+3^{2002}\right)\)
\(\Rightarrow2S=3^{2003}-1\)
\(\Rightarrow S=\frac{3^{2003}-1}{2}\)
Vậy \(S=\frac{3^{2003}-1}{2}\)
b ) đề bài sai mong bạn xem lại
Nếu các bạn nào ko hiểu thì copy trên mạng và chỉ cho mình copy ở đâu
S=3^0+3^1+3^2+...3^2002=1+3+3^2+...3^2002
3S=3+3^2+3^3+...3^2003
xét hiệu 3S-S=2S=(3+3^2+3^3+...+3^2003)-(1+3+3^2+...+3^2002)=3^2003-1
suy ra S=\(\frac{3^{2003}-1}{2}\)
S=3 mũ 0 + 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + ...............+3 mũ 2002; chứng minh S chia hết cho bảy