tính B =\(\frac{\left(2018^2-2014\right)\left(2018^2+4016-3\right).2009}{2005.2007.2010.2012}\)
rút gọn
\(B=\frac{\left(2008^2-2014\right)\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
Tính
\(A=\frac{\left(2008^2-2014\right)\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
Rút gọn BT:
\(\frac{\left(2008^2-2014\right)\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
Tính :
a) \(\text{A}=\left(1\times2\right)^{-1}+\left(2\times3\right)^{-1}+...+\left(2014\times2015\right)^{-1}\).
b) \(\text{B}=\frac{2018+\frac{2017}{2}+\frac{2016}{3}+\frac{2015}{4}+...+\frac{2}{2017}+\frac{1}{2018}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2018}+\frac{1}{2019}}\).
Thực hiện phép tính:\(\left(1-\frac{1}{2018}\right).\left(1-\frac{2}{2018}\right).\left(1-\frac{3}{2018}\right)...\left(1-\frac{2020}{2018}\right)\)
Tính:\(A=2018.\left(\frac{1}{2007}-\frac{2009}{1004}\right)-\left(\frac{1}{2007}-2\right)\)
phá ngoặc ra ta có:
A = 2018/2017 - 2018*2019/1004 - 1/2007 +2
= 1 - 2*(2019 -1)
= 1 - 4016
= -4015
Tính \(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2018}\left(1+2+3+...+2018\right)\)
\(B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{2018}.\frac{\left(1+2018\right).2018}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{2019}{2}=1+\frac{3+4+...+2019}{2}=1+\frac{\left(3+2019\right)2017}{2}=2039188\)
các bạn tham khảo nhé
a, Cho \(a^{2018}+b^{2018}+c^{2018}=\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)
Tính \(P=\left(a-b\right)^{2018}+\left(b-c\right)^{2018}+\left(c-a\right)^{2018}\)
b, Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)và \(\frac{2}{ab}-\frac{1}{c^2}=9\)
Tính \(P=\left(a+2b+c\right)^{2018}\)
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Mà đẳng thức trên xảy ra dấu =
\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)
Bài kia tí nghĩ nốt, khó v
Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)
Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)
Tính giá trị của biểu thức sau:
\(A=\dfrac{\left(2008^2-2014\right).\left(2008^2+4016-3\right).2009}{2005.2007.2010.2011}\)
20082+4016-3
=20082+2.2008.1+1-4
=(2008+1)2-4
=20092-22
=2007.2011
rút gọn ta được:
\(\dfrac{\left(2008^2-2014\right).2009}{2005.2010}\) (1)
Tiếp theo bạn có thể :
Đặt 2008=x
--> 20082-2014=x2-x-6
giải phương trình trên ta được:
x2-x-6=(x-3).(x+2)
lúc này:
(x-3).(x+2)=(2008-3).(2008+2)=2005.2010 (2)
Từ (1) và (2):
=>\(\dfrac{2005.2010.2009}{2005.2010}\)= 2009