Những câu hỏi liên quan
PN
Xem chi tiết
MH
Xem chi tiết
TD
26 tháng 2 2017 lúc 10:35

Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{b}=\frac{2c}{d}\)

Đặt:\(\frac{2a}{b}=\frac{2c}{d}=k\left(k\ne0\right)\)

=> 2a=bk; 2c=dk

Ta có:\(\frac{2a+3b}{2a-3b}=\frac{bk+3b}{bk-3b}=\frac{b\left(k+3\right)}{b\left(k-3\right)}=\frac{k+3}{k-3}\left(1\right)\)

\(\frac{2c+3d}{2c-3d}=\frac{dk+3d}{dk-3d}=\frac{d\left(k+3\right)}{d\left(k-3\right)}=\frac{k+3}{k-3}\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

Vậy...

Bình luận (0)
ND
Xem chi tiết
TP
18 tháng 8 2018 lúc 10:07

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) => đpcm

Bình luận (0)
LT
Xem chi tiết
H24
12 tháng 4 2017 lúc 12:55

Đặt a/b=b/c=k

Suy ra a=bk , c=dk

Suy ra 5a + 3b/ 5a - 3b= 5bk + 3b / 5bk - 3b = b(5k + 3) / b(5k - 3 ) = 5k + 3 / 5k - 3  (1)

           5c + 3d / 5c - 3d = 5dk + 3d / 5dk - 5d = d(5k + 3) / d(5k - 3 ) = 5k + 3 / 5k - 3  (2)

Từ (1) và (2) suy ra (đpcm)

con mẹ thằng ngu thấy bố mày chưa

Bình luận (0)
VM
12 tháng 4 2017 lúc 12:55

Đây là bài giải của bạn Trần Như cách đây lâu rồi. Mình ghi lại vì không cop được link.

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

Từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất của tỉ lệ thức ta được:

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

Bình luận (0)
BA
Xem chi tiết
AH
26 tháng 10 2018 lúc 20:55

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

a) Ta có:

\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}\)

\(\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)

b)

\(\frac{2a-b}{2a+b}=\frac{2bk-b}{2bk+b}=\frac{b(2k-1)}{bb(2k+1)}=\frac{2k-1}{2k+1}\)

\(\frac{2c-d}{2c+d}=\frac{2dk-d}{2dk+d}=\frac{d(2k-1)}{d(2k+1)}=\frac{2k-1}{2k+1}\)

\(\Rightarrow \frac{2a-b}{2a+b}=\frac{2c-d}{2c+d}\) (đpcm)

Bình luận (0)
TT
Xem chi tiết
TD
26 tháng 11 2017 lúc 9:53

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)

\(\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Bình luận (0)
HU
Xem chi tiết
NT
19 tháng 10 2016 lúc 12:24

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{5a+3b}{5a-3b}=\frac{5x+3d}{5c-3d}\)

Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

Bình luận (0)
PD
19 tháng 10 2016 lúc 17:19

Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đpcm)

 

Bình luận (0)
NT
5 tháng 11 2020 lúc 16:16

cho tam giác abc trên cạnh ab lấy điểm m trên nửa mặt phẳng bờ ab có chứa điểm c và tia mx sao cho góc aox = góc b

A) chứng minh rằng mx song song với bc mx cắt ac

B) trên nửa mặt phẳng bờ ac không chứa điểm b vẽ tia ay sao cho góc bằng acb trên nửa mặt phẳng bờ ab không chứa điểm c vẽ tia oy sao cho góc bac bằng góc abc chứng minh rằng ac và ab là hai tia đối nhau

C) chứng tỏ tổng các góc trong tam giác abc là bằng 180 độ

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
BC
24 tháng 7 2017 lúc 14:36

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

Suy ra: \(\frac{2a+3b}{2a-3b}=\frac{2.bk+3b}{2.bk-3b}=\frac{b.\left(2k+3\right)}{b.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)

\(\frac{2c+3d}{2c-3d}=\frac{2.dk+3d}{2.dk-3d}=\frac{d.\left(2k+3\right)}{d.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)

Vậy \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

Bình luận (0)
PA
24 tháng 7 2017 lúc 15:02

Ta có:\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{2a}{2c}=\frac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)

=>\(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)=>\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

Vậy\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

Bình luận (0)
H24
Xem chi tiết
KS
25 tháng 8 2018 lúc 18:32

\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{5a}{5b}=\frac{9c}{9d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2b}=\frac{5a}{5b}=\frac{9c}{9d}=\frac{5a+9c}{5b+9d}\)

                                      đpcm

b) bạn xem lại đề nhé

Bình luận (0)
TG
25 tháng 8 2018 lúc 18:32

a, Theo tính chất dãy tỉ số bằng nhau ta có :

\(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}\\\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{9c}{9d}=\frac{5a+9c}{5b+9d}\end{cases}}\)

\(\Rightarrow\frac{5a+9c}{5b+9d}=\frac{2a}{2b}\)     ( đpcm )

b, Sai đề nha là \(\frac{5a+3b}{5a-3b}\)

 Ta có : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\hept{\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\\\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\end{cases}}\)

\(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

Bình luận (0)
H24
27 tháng 8 2018 lúc 8:49

đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>a=bk,c=dk\)

\(=>\frac{5a+9c}{5b+9d}=\frac{5bk+9dk}{5b+9d}=\frac{k.\left(5b+9d\right)}{5b+9d}=k\)

\(\frac{2a}{2b}=\frac{2bk}{2b}=k\)

\(=>\frac{5a+9c}{5b+9d}=\frac{2a}{2b}\)

Bình luận (0)