Cho a/b=c/d
CMR:
a. (a-b/c-a)^2 =ab/cd
b. (a+b/c+a)^3 = a^3 -b^3/c^3 -d^3
cho a/b=c/d
CMR:a^2/b^2+c^2/d^2= a+c/b+d
^2: mũ 2
Cho a+b+c+d=0
a) Chứng minh a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
b)Chứng minh (a+b+c+)^3=a^3 + b^3 + c^3+3(a+b)(b+c)(c+a)
c)Cho c-a=b+d. Chứng Minh a^3+b^3-c^3+d^3=3(d-c)(ab+cd)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
Cho hình vẽ:
a c/m AB //CD
b c/m AD//BC
c tính góc C1;C2;C3
ơ sao góc A 1 lại bằng 110 độ nhờ
cho a/b=c/d, chứng minh rằng:
a. ab/cd = a^2-b^2/ c^2 -d^2
b. 7a-4b/3a+5b=7c-4d/3c+5d
c. ac/bd= a^2+c^2/b^2+d^2= (c-a)^2/(d-b)^2
d. a^3+b^3/c^3+d^3= (a+b)^3/(c+d)^3 với (a/b =c/d khác 1)
cho a/b = c/d ; c khác o
CMR(a-b/c-d)^2 =ab/cd
(a+b/c+d)^3=(a^3-b^3)/(c^3-d^3)
Ta co: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)
=>. \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
Ta co: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{\left(a+c\right)^3}{\left(b+d\right)^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}=\frac{a^3-c^3}{b^3-d^3}\)
Cho a/b=c/d.Chứng minh
a, 5a+3b/5c+3d=5a-3b/5c-3b
b,(a-b)^2/(c-d)^2=ab/cd
c,a^3-b^3/c^3-d^3=(a+b/c+d)^3
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Cho tỉ lệ thức a/b =c/d Chứng minh rằng:
a)a-b/a = c-d/c
b)a+b/a-b=c+d/c-d
c)(a-b/c-d)2 = ab/cd
d)(a+b/c+d)3 = 33-b3/c3-d3
e)2a+3b/2a-3b = 2c+3d/2c-3d
g)ab/cd = a2-b2/c2-d2
Phân tích thành nhân tử
1, a(b-c)3+b(c- a)3+c(a- b)
2, a^4(b-c)+b^4(c-a)+c^4(a-b)
3, bc(a+d)(b-c)-ac(b+d)(a-c)+ab(c+d)(a-b)
4, (a+b+c)^3-(a+b-c)^3-(b+c-a)^3-(c+a-b)^3
5, (b-c)^3+(c-a)^3+(a-b)^3
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)