Những câu hỏi liên quan
HB
Xem chi tiết
NQ
26 tháng 7 2021 lúc 17:31

ta có : 

\(a^3+c^3=\left(a+c\right)^3-3ac\left(a+c\right)\)

nên \(a^3+c^3-b^3+3abc=\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)\)

\(=\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2-3ac\right]=\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)\)

b. tương tự ta có :

\(a^3-b^3-c^3-3abc=a^3-\left(b+c\right)^3+3bc\left(b+c-a\right)\)

\(=\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2-3bc\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)

c. ta có : \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=\left(x-z+z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-z\right)^3+3\left(x-z\right)\left(z-y\right)\left(x-y\right)+\left(z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=3\left(x-z\right)\left(z-y\right)\left(x-y\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
29 tháng 8 2017 lúc 3:03

Bình luận (0)
HG
Xem chi tiết
TP
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Bình luận (2)
LD
3 tháng 5 2018 lúc 9:24

????????

Bình luận (0)
NK
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Bình luận (0)
 Khách vãng lai đã xóa
MC
Xem chi tiết
NT
15 tháng 3 2021 lúc 21:36

b) Ta có: \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)

\(=\left(ab^2-cb^2\right)+\left(ca^2-c^2a\right)+\left(bc^2-ba^2\right)\)

\(=b^2\left(a-c\right)+ca\left(a-c\right)+b\left(c^2-a^2\right)\)

\(=\left(a-c\right)\left(b^2+ca\right)-b\left(a-c\right)\left(a+c\right)\)

\(=\left(a-c\right)\left(b^2+ca-ba-bc\right)\)

\(=\left(a-c\right)\left[b\left(b-a\right)+c\left(a-b\right)\right]\)

\(=\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]\)

\(=\left(a-c\right)\left(b-a\right)\left(b-c\right)\)

Bình luận (0)
AT
10 tháng 6 2021 lúc 22:23

trời ơi cái qq gì í đây

Bình luận (0)
 Khách vãng lai đã xóa
HI
Xem chi tiết
H24
28 tháng 9 2016 lúc 18:15

Bài 1 :

a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

Bình luận (0)
HI
28 tháng 9 2016 lúc 18:31

Đã có kết quả

Bài 1,chữa phần a

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

Chữa phần b

x3-x+3x2y+3xy2+y3-y

=(x+y)(x+y-1)(x+y+1)

Bài2

a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc

Ai làm đúng như này ớ sẽ k

Bình luận (0)
LC
28 tháng 9 2016 lúc 20:27

Mình làm bài 2 luôn:

  Ta có: a3+b3+c3=(a+b)3-3a2b-3ab2+c3

                          =(a+b)3+c3-3ab(a+b)

                          =(a+b+c)[(a+b)2-(a+b)c+c2 ]-3ab(a+b)

                          =-3ab(a+b)    (vì a+b+c=0)

Từ a+b+c=0 =>-c=a+b

  => -3ab(a+b)=-3ab(-c)=3abc     

                                                  đpcm

Bình luận (0)
NL
Xem chi tiết
LL
23 tháng 8 2021 lúc 20:30

\(A=x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left(y^2-z^2\right)+y\left(-y^2+z^2-x^2+y^2\right)+z\left(x^2-y^2\right)=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)=\left(y-z\right)\left(y+z\right)\left(x-y\right)-\left(x-y\right)\left(x+y\right)\left(y-z\right)=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

Bình luận (0)
LL
23 tháng 8 2021 lúc 20:34

\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c+abc+b^2c\right)\)

Bình luận (0)
LL
23 tháng 8 2021 lúc 20:36

\(C=ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b-a+c\right)+ac\left(a-c\right)=ab\left(a+b\right)-bc\left(a+b\right)+bc\left(a-c\right)+ac\left(a-c\right)=b\left(a+b\right)\left(a-c\right)+c\left(a-c\right)\left(a+b\right)=\left(a+b\right)\left(c+c\right)\left(a-c\right)\)

Bình luận (0)
DH
Xem chi tiết
NN
Xem chi tiết
H24
29 tháng 8 2019 lúc 11:46

#)Giải :

a) \(x+y+z=0\Leftrightarrow x+y=-z\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\Leftrightarrow x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\) hay 3xyz (đpcm)

b) \(x=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(\Leftrightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (Áp dụng hằng đẳng thức)

\(\Leftrightarrow x=\left[\left(b-c\right)^3+\left(c-a\right)^3\right]+\left(a-b\right)^3\)

\(=\left[\left(b-a\right)^3+\left(c-a\right)^3\right]-3\left(b-c\right)\left(c-a\right)\left[\left(b-c\right)+\left(c-a\right)\right]+\left(a-b\right)^3\)

\(=\left(b-a\right)^3-3\left(b-c\right)\left(c-a\right)\left(b-a\right)+\left(a-b\right)^3\)

\(=\left[-\left(a-b\right)^3\right]-3\left(b-c\right)\left(c-a\right)\left[-\left(a-b\right)\right]+\left(a-b\right)^3\)

\(=-\left(a-b\right)^3+3\left(a-b\right)\left(b-c\right)\left(c-a\right)+\left(a-b\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Bình luận (0)
PK
Xem chi tiết
NL
Xem chi tiết