Những câu hỏi liên quan
TA
Xem chi tiết
NT
25 tháng 10 2021 lúc 21:52

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

Bình luận (1)
QN
Xem chi tiết
TH
Xem chi tiết
NU
16 tháng 9 2020 lúc 20:58

A C B D O M K H

a;b dễ chắc tự làm đc

c, lấy K sao cho M là trđ của OK

mà có M là trđ của AC (gt) 

=> COAK là hình bình hành (dh)

=> CK // OA hay CK // OH và AK // CO hay AK // OD

xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\)  (talet)

xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)

=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)

=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)

mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)

=> AC^2 = HB*AC

=> AC = HB (chia 2 vế cho ac vì ac > 0)

Bình luận (0)
 Khách vãng lai đã xóa
KN
17 tháng 9 2020 lúc 21:18

Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)

Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)

CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)

Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)

Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)

Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
17 tháng 9 2020 lúc 21:24

khó quá thôi

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
7 tháng 9 2021 lúc 22:51

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: BH=CH

b: Ta có: BH=CH

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay AH=12(cm)

\(\Leftrightarrow AG=8\left(cm\right)\)

Bình luận (0)
NT
7 tháng 9 2021 lúc 22:52

c: Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

Bình luận (0)
HM
Xem chi tiết
NT
28 tháng 8 2021 lúc 20:18

a: Xét ΔABC vuông tại A có 

\(BC=\dfrac{AB}{\dfrac{1}{2}}=\dfrac{10}{\dfrac{1}{2}}=20\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC=10\sqrt{3}\left(cm\right)\)

Bình luận (0)
NX
Xem chi tiết
NT
5 tháng 4 2021 lúc 20:10

Bạn nói rõ AB và AC bằng bao nhiêu đi bạn?

Bình luận (1)
NT
5 tháng 4 2021 lúc 21:15

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10

Vậy: BC=10

Bình luận (0)
ND
Xem chi tiết
BT
22 tháng 7 2021 lúc 15:14

BM vuông góc cái j?

Bình luận (0)
GH
Xem chi tiết
BL
Xem chi tiết
ND
20 tháng 6 2020 lúc 21:29

A B C H K M G

Bài làm:

a) Ta có: \(\hept{\begin{cases}AB^2+AC^2=9^2+12^2=225\left(cm\right)\\BC^2=15^2=225\left(cm\right)\end{cases}}\)

\(\Rightarrow AB^2+AC^2=BC^2\)

Áp dụng định lý Pytago đảo => Tam giác ABC vuông tại A

=> đpcm

b) Xét 2 tam giác: \(\Delta MHC\)và \(\Delta MKB\)có:

\(\hept{\begin{cases}MK=MH\left(gt\right)\\\widehat{HMC}=\widehat{KMB}\\MB=MC\left(gt\right)\end{cases}}\)(đối đỉnh)

=> \(\Delta MHC=\Delta MKB\left(c.g.c\right)\)

=> đpcm

c) Áp dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông

=> \(AM=\frac{1}{2}BC=MC\)

=> Tam giác AMC cân tại M, mà MH là đường cao xuất phát từ đỉnh trong tam giác cân AMC

=> MH đồng thời là đường trung tuyến của tam giác AMC

=> H là trung điểm AC

=> BH là đường trung tuyến của tam giác ABC

Mà AG,BH là 2 đường trung tuyến của tam giác ABC cắt nhau tại G

=> G là trọng tâm tam giác ABC

=> đpcm

Học tốt!!!!

Bình luận (0)
 Khách vãng lai đã xóa
ND
20 tháng 6 2020 lúc 22:03

Ở đoạn xét 2 tam giác mình viết bị lỗi, bạn viết thêm cho mình MB = MC (giả thiết) nhé!

Bình luận (0)
 Khách vãng lai đã xóa
ND
20 tháng 6 2020 lúc 22:04

Và đoạn cuối bị lỗi

=> G là trong tâm tam giác ABC

Chúc bạn học tốt! ^ ^

Bình luận (0)
 Khách vãng lai đã xóa