Những câu hỏi liên quan
HN
Xem chi tiết
NT
Xem chi tiết
PN
30 tháng 3 2021 lúc 19:45

\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}=\frac{\left(t-1\right)^2+2016}{t^2}=\frac{t^2-2t+2017}{t^2}\)

\(=1-\frac{2}{t}+\frac{2017}{t^2}=1-2a+2017a^2=2017\left(a^2-2.\frac{1}{4034}+\frac{1}{4034}^2\right)-\frac{2017}{4034^2}+1\)

\(=2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017^3}\ge1-\frac{1}{2017^3}\)

tự xét dấu = 

Bình luận (0)
 Khách vãng lai đã xóa

\(B=\frac{\left(x-2\right)^2+2016}{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(t-1\right)^2+2016}{1^2}\)

\(\Leftrightarrow\frac{t^2-2t+2017}{t^2}\)

\(\Leftrightarrow1-\frac{2}{t}+\frac{2017}{t^2}\)

\(\Leftrightarrow1-2a+2017a^2\)

\(\Leftrightarrow a^2-2\times[\frac{1}{4034}+\frac{1^2}{4034}]-\frac{2017}{4034^2}+1\)

\(\Leftrightarrow2017\left(a-\frac{1}{4034}\right)^2+1-\frac{1}{2017}^3\)

phần cuối tự làm nha

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
LD
25 tháng 9 2020 lúc 21:32

C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé

E = | 3x + 1 | + 2| x - y | + 1

\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)

=> MinE = 1 <=> x = y = -1/3

F = 5| x - 1 | + 1/2| 2x + y | + 2020

\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

=> MinF = 2020 <=> x = 1 ; y = -2

Bình luận (0)
 Khách vãng lai đã xóa
LD
25 tháng 9 2020 lúc 21:46

C = 2| x - 1 | + | 2x + 3 | - 2020

= | 2x - 2 | + | 2x + 3 | - 2020

= | 2x - 2 | + | -( 2x + 3 ) | - 2020

= | 2x - 2 | + | -2x - 3 | - 2020

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 2 )( -2x - 3 ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)

=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)

D = | 3 - 2x | + 2| 1 - x | + 1/2

= | 3 - 2x | + | 2 - 2x | + 1/2

= | -( 3 - 2x ) | + | 2 - 2x | + 1/2

= | 2x - 3 | + | 2 - 2x | + 1/2

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 3 )( 2 - 2x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)

=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
26 tháng 9 2020 lúc 4:58

Cảm ơn bạn nhiều

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
LD
21 tháng 4 2021 lúc 16:22

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

Bình luận (0)
 Khách vãng lai đã xóa
LD
21 tháng 4 2021 lúc 16:24

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

Bình luận (0)
 Khách vãng lai đã xóa
NT
21 tháng 4 2021 lúc 16:27

Bài 1 : 

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)

\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)

Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)

Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020 

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
CP
Xem chi tiết
NC
1 tháng 12 2018 lúc 19:50

\(x^4-2x^2+1+x^2+2x+1+2018=\left(x^2-1\right)^2+\left(x+1\right)^2+2018\ge2018\)

Dấu "=" xayr ra <=> \(\hept{\begin{cases}x^2-1=0\\x+1=0\end{cases}\Leftrightarrow x=-1}\)

Kết luận :...

Bình luận (0)
HN
Xem chi tiết
.
18 tháng 10 2020 lúc 9:14

Ta có: \(\left|\frac{1}{2}x+3\right|\ge0\forall x\)

\(\Rightarrow A=\left|\frac{1}{2}x+3\right|-2020\ge-2020\)

Dấu "=" xảy ra khi \(\frac{1}{2}x+3=0\)

\(\frac{1}{2}x=-3\)

\(x=-6\)

Vậy GTNN của A là -2020 tại x = -6.

Bình luận (0)
 Khách vãng lai đã xóa
NH
18 tháng 10 2020 lúc 9:14

\(A=\left|\frac{1}{2}x+3\right|-2020\ge-2020\)

Min A = -2020

\(\Leftrightarrow\frac{1}{2}x+3=0\)

\(\Leftrightarrow x=-6\)

Vậy ........

Bình luận (0)
 Khách vãng lai đã xóa
LD
18 tháng 10 2020 lúc 9:15

A = | 1/2x + 3 | - 2020

Ta có : | 1/2x + 3 | ≥ 0 ∀ x

=> | 1/2x + 3 | - 2020 ≥ -2020 ∀ x

Dấu "=" xảy ra khi 1/2x + 3 = 0 => x = -6

=> MinA = -2020 <=> x = -6

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HC
27 tháng 11 2021 lúc 16:58
Bình luận (1)
TN
Xem chi tiết
ZZ
21 tháng 7 2020 lúc 21:16

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
21 tháng 7 2020 lúc 21:01

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
21 tháng 7 2020 lúc 21:05

1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa