Cho S=3 mũ 0+3 mũ 2+3 mũ 4 +3 mũ 6 +.....+3 mũ 2020
a)Tính S
b)Chứng minh S chia hết cho 7
cho S=3 mũ 0+3 mũ 2+3 mũ 4+3 mũ 6+...+3 mũ 2002
a)Tính S
b)Chứng minh S chia hết cho 7
1.Chứng minh rằng:
a)A= 27 mũ 27 +3 mũ 77 chia hết cho 82
2.Cho S= 3 mũ 2 +3 mũ 4+.....+3 mũ 998+ 3 mũ 1000
a) Tính S b) chứng minh rằng :S chia hết cho 7 dư 6
Cho S = 1+3+3 mũ 2 + 3 mũ 3+ 3 mũ 4+ 3 mũ 5+ 3 mũ 6+ 3 mũ 7+ 3 mũ 8+ 3 mũ 9.Chứng tỏ rằng S chia hết cho 4
b) chứng minh rằng hiệu abc - cba chia hết cho 11 (với a>c)
gải giúp mình với
Chứng tỏ:
a)S=4+4 mũ 2+4 mũ 3+4 mũ 4+...+4 mũ 99+4 mũ 100 chia hết cho 5
b)S=2+2 mũ 2+2 mũ 3+2 mũ 4+...+2 mũ 2009+2 mũ 2010 chia hết cho 6
c)S=1+7+7 mũ 2+7 mũ 3+...+7 mũ 101 chia hết cho 8
d)S=4 mũ 39+4 mũ 40+4 mũ 41 chia hết cho 28
AI XONG TRC MÌNH TICK NHA~
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba
b)Cm B=10 mũ 100 cộng 17 chia hết cho 9
c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2
mong mọi người trả lời giúp mik cảm ơn các bạn
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
cho s=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + 3 mũ 7+ 3 mũ 8 + 3 mũ 9.Chứng tỏ S chia hết cho 4
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36.(1 + 3) + 38.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)
cho s=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 + 3 mũ 7+ 3 mũ 8 + 3 mũ 9.Chứng tỏ S chia hết cho 4