Những câu hỏi liên quan
TD
Xem chi tiết
H24
10 tháng 8 2021 lúc 10:20

x2=y3=z5=x−2y+3z2−2.3+3.5=3811

Bình luận (0)
H24
10 tháng 8 2021 lúc 10:23

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{y}{5}\)\(\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2-6+15}=\dfrac{38}{11}\)

\(\dfrac{x}{2}=\dfrac{38}{11}\Rightarrow x=\dfrac{76}{11}\)

\(\dfrac{y}{3}=\dfrac{38}{11}\Rightarrow y=\dfrac{114}{11}\)

\(\dfrac{z}{5}=\dfrac{38}{11}\Rightarrow z=\dfrac{190}{11}\)

Bình luận (0)

Giải:

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2.3+3.5}=\dfrac{38}{11}\) 

Suy ra:

\(\dfrac{x}{2}=\dfrac{38}{11}\Rightarrow x=\dfrac{38.2}{11}=\dfrac{76}{11}\) 

\(\dfrac{y}{3}=\dfrac{38}{11}\Rightarrow y=\dfrac{38.3}{11}=\dfrac{114}{11}\) 

\(\dfrac{z}{5}=\dfrac{38}{11}\Rightarrow z=\dfrac{38.5}{11}=\dfrac{190}{11}\)

Bình luận (0)
PN
Xem chi tiết
H24
22 tháng 6 2023 lúc 8:43

Bài `10`

`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`

ADTC dãy tỉ số bằng nhau ta có :

`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`

`=> x/2=2=>x=2.2=4`

`=>y/3=2=>y=2.3=6`

`b,` Ta có : `2x=5y=>x/5=y/2`

ADTC dãy tỉ số bằng nhau ta có :

`x/5=y/2=(x+y)/(5+2)=-42/7=-6`

`=>x/5=-6=>x=-6.5=-30`

`=>y/2=-6=>y=-6.2=-12`

Bài `11`

`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`

ADTC dãy tỉ số bằng nhau ta có :

`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`

`=>x/3=2=>x=2.3=6`

`=>y/4=2=>y=2.4=8`

`=>z/6=2=>z=2.6=12`

Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`

`d,` Ta có :

`x/2=y/3=>x/4=y/6`

`y/2=z/3=>y/6=z/9`

`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`

ADTC dãy tỉ số bằng nhau ta có :

`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`

`=>x/4=1=>x=1.4=4`

`=>y/6=1=>y=1.6=6`

`=>z/9=1=>z=1.9=9`

Bình luận (0)
TN
Xem chi tiết
TN
20 tháng 9 2017 lúc 12:16

lam on giup minh voi

Bình luận (0)
26
Xem chi tiết
DT
Xem chi tiết
AT
20 tháng 7 2019 lúc 19:07

Những hằng đẳng thức đáng nhớ (Tiếp 2)

Bình luận (0)
NS
Xem chi tiết
NN
3 tháng 8 2019 lúc 10:26

mk làm mất công lắm mong bạn tick

Bình luận (2)
H24
3 tháng 8 2019 lúc 9:44

1)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{y}=\frac{9}{11}=\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\) ( do \(x+y=20\) )

\(\Rightarrow\left\{{}\begin{matrix}x=3.9\\y=3.11\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=27\\y=33\end{matrix}\right.\)

Vậy : \(\left(x,y\right)=\left(27,33\right)\)

2)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{30}{10}=3\) ( do \(x+y+z=30\))

\(\Rightarrow\left\{{}\begin{matrix}x=3.2\\y=3.3\\z=3.5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(6,9,15\right)\)

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x-2y+3z}{2-6+15}=\frac{38}{11}\)

Bạn tự tìm x,y,z phần này nhé, tại số xấu quá !

Bình luận (0)
LH
3 tháng 8 2019 lúc 9:53

\(\frac{x}{y}=\frac{9}{11}\Rightarrow x=9k;y=11k\Rightarrow x+y=20k=60\Rightarrow k=3\Rightarrow x=27;y=33\)

\(7x=4y\Rightarrow x=4k;y=7k\Rightarrow y-x=3k=24\Rightarrow k=8\Rightarrow x=56;y=24\)

2,

Áp dụng day ti lệ bàng nhau ta đươc:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{10}=\frac{30}{10}=3\Rightarrow x=6;y=9;z=15\)

\(b,\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2y}{6}=\frac{3z}{15}\)

Áp dụng day ti lệ bàng nhau ta đươc:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2y}{6}=\frac{3z}{15}=\frac{x-2y+3z}{2-6+15}=\frac{38}{11}\Rightarrow x=\frac{76}{11};y=\frac{104}{11};z=\frac{190}{11}\)

Bình luận (0)
H24
Xem chi tiết
TD
4 tháng 7 2017 lúc 18:15

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

Bình luận (0)
H24
4 tháng 7 2017 lúc 18:45

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

Bình luận (0)
H24
4 tháng 7 2017 lúc 18:54

Sửa lại bài 3a

Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)

Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)

Bình luận (0)
H24
Xem chi tiết
PN
Xem chi tiết
NM
16 tháng 10 2021 lúc 17:37

\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)

a, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)

b, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)

c, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)

d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)

\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)

Bình luận (0)